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Giovanni Antonio Chirilli 
Rapidity factorization of high-energy scattering processes at NLO

Fast fields are 
quantum fields

Slow fields are 
classical fields

Rapidity factorization 
approach

Wilson lines

High-energy expansion in color dipoles at the NLO

η>Y

η<Y

+ +...

The high-energy operator expansion is

T{̂jµ(x)̂jν(y)} =
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Impact factor

Operator expansion in conformal dipoles

T {̂jµ(x)̂jν(y)} =

∫
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The new NLO impact factor is conformally invariant.

In conformal N = 4 SYM theory one can construct the composite conformal
dipole operator order by order in perturbation theory.
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Giovanni Antonio Chirilli 
Rapidity factorization of high-energy scattering processes at NLO

NLO evolution of composite “conformal” dipoles in QCD

2a
d

da
[tr{Ûz1
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Û†
z2
}− tr{Ûz1
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Ûz4
Û†
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3 Nc − 2

3nf I. Balitsky and G.A.C

KNLO BK = Running coupling part + Conformal "non-analytic" (in j) part
+ Conformal analytic (N = 4) part

Linearized KNLO BK reproduces the known result for the forward NLO BFKL
kernel Fadin and Lipatov (1998).

G. A. Chirilli (University of Regensburg) Rapidity factorization at NLO BNL saturation - April 27, 2017 23 / 51

NLO evolution of conformal 
dipoles in QCD

We consider the lightlike dipoles (in the p1 direction) and
impose the cutoff on the maximal ! emitted by any gluon
from the Wilson lines, so
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As we will see below, the (almost) conformal result (5)
comes from the regularization (17). In Appendix B we will
present the NLO kernel for the cutoff with the slope (6).
We start with the calculation of Fig. 3(a). Multiplying two
propagators (9), two three-gluon vertices, and two bare
propagators, we obtain
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where

 !#)'#p; k;"p" k% ! #p" k%'g#) $ #2k$ p%#g)' $ #"2p" k%)g'#: (19)

In this formula 1
%"i& comes from the integration over the u parameter in the l.h.s. and 1

%"%1"%2$i& comes from the integration
of the right three-gluon vertex over the half-space x) > 0. Similarly, we get 1

%0"i& from the integration over the v parameter
and 1

%0"%01"%02$i&
from the integration of the left three-gluon vertex over the half-space x) < 0. The factor 1

2 in the r.h.s. is
combinatorial. Note that in the light-cone gauge one can always neglect the %p2( components of the momenta in the three-
gluon vertex since they are always multiplied by some d(".

Taking residues at % ! %0 ! 0 and %2 ! "%1, %02 ! "%01, we obtain
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FIG. 3 (color online). Cut self-energy diagram.

NEXT-TO-LEADING ORDER EVOLUTION OF COLOR DIPOLES PHYSICAL REVIEW D 77, 014019 (2008)

014019-5

I. Balitsky, G.A. Chirilli

This result was obtained in 
rapidity factorization 
approach

What about other 
operators?



Michael Lublinsky 
From light-cone wave function to NLO JIMWLK

A. Kovner, M. Lublinsky, 
Y. Mulian

Comparing with Balitsky and Chirilli (arXiv:1309.7644 [hep-ph])

Compute evolution of Wilson lines with open color indices:

∂Y [Sab(x)] = −HNLOJIMWLK [Sab(x)]

∂Y [Sab(x)Scd(y)] = −HNLOJIMWLK [Sab(x)Scd(y)]

∂Y [Sab(x)Scd(y)Sef(z)] = −HNLOJIMWLK [Sab(x)Scd(y)Sef(z)]

100% agreement!
The form of the operator 
was first obtained by 
comparison with other 
results

Light Cone Wave Function

HLCQCD |Ψ⟩ = E |Ψ⟩ Born-Oppenheimer adiabatic approximation

k+

Λ

ψ
Λ

soft
modes

hard
(valence)
modes

ρ

Λ

Λ ’

k+Boost

Λ Λ ’

k+ e δy+k

ψ
Λ’

Hard particles with k+ > Λ scatter of the target. Hard (valence) modes are described
by the valence density ρ(x⊥) (shock wave).

The boost opens a window above Λ with the width ∼ δy. The window is populated
by soft modes, which became hard after the boost. These newly created hard modes do
scatter off the target.

In the dilute limit ρ ∼ 1; gluon emission ∼ αs ρ, LO = one gluon, NLO = 2 gluons/quarks

Presented new results on 
calculation of H at NLO order 

Shock-wave

LCWF at NLO

ML and Yair Mulian, arXiv:1610.03453

• g3 + normalisation at g4

|ΨNLO⟩ = N |0⟩ +
∑

i

|i⟩
[

−
⟨i|Hint |0⟩

Ei

+
⟨i|Hint |j⟩ ⟨j|Hint |0⟩

Ei Ej

+

+
⟨i|Hint |0⟩ ⟨j|Hint |0⟩2 (2Ej − Ei)

2E2
i
E2

j

−
⟨i|Hint |j⟩ ⟨j|Hint |k⟩ ⟨k|Hint |0⟩

Ei Ej Ek

]

i runs over one gluon, two gluons, and two quarks

Operator valued matrix elements

Accounts for first non-linear/saturation effects in the projectile

⟨ΨNLO|ΨNLO⟩ = 1 → |N | ; N = |N | eiφ

The result can be used for 
any operator

Consider gluon emission at 
NLO



Guillaume Beuf 
Full NLO corrections for DIS structure functions in the dipole factorization formalism

Full NLO corrections for DIS structure functions in the dipole factorization formalism

Introduction

Dipole factorization for eikonal DIS

Total cross section for (virtual) photon scattering on a gluon shockwave
background, in light-front perturbation theory:
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Calculated LF wave function

Demanding calculation with 
cumbersome expressions

Showed cancellation of UV 
divergencies

Explicit dependence on the 
cut-off parameter

Now the evolution at NLO is 
known. What about 
observables?

Full NLO corrections for DIS structure functions in the dipole factorization formalism

One-loop correction to the �
T,L ! qq̄ LF wave-functions

Diagrams for �T and �L LFWFs: 3 steps graphs
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Risto Paatelainen 
Towards higher-order accuracy in LCPT

LCPT calculations in CGC slowly approaching the NLO level. 
Perturbative computation of wave functions is quite tedious 
(hard to automatize)

Introduce a new helicity formulation for LCPT. Perturbative 
(NLO) computation of wave functions is easy and can be fully 
automatized

One should take care of UV divergencies. Applied 
new Four Dimensional Helicity (FDH) scheme (T. 
Lappi & R. Paatelainen)

Results from two different 
schemes

For the full correction ((a) + (b) + (c) + (d)) we find
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For comparison the full CDR scheme result was
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Consider now the DIS process �⇤ ! qq̄ (talk by G. Beuf)
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Edmond Iancu 
Particle production in pA collisions beyond leading orderNLO BK evolution

“Negative growth” of the dipole scattering amplitude
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Qs,0/⇤QCD = 26

Lappi, Mäntysaari, arXiv:1502.02400

Not really a surprise

similar problems for NLO BFKL
large transverse logarithms
collinear resummations
Mellin representation

(Salam, Ciafaloni, Colferai, Stasto,
98-03; Altarelli, Ball, Forte, 00-03)

Collinear improvement for NLO BK (transverse coordinates)
(E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)

Evolution becomes stable with promising phenomenology
excellents fits to DIS (Iancu et al, 2015; Albacete, 2015)
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“Negative growth” of the dipole 
scattering amplitude

NLO BK evolution

“Negative growth” of the dipole scattering amplitude

Lappi, Mäntysaari, arXiv:1601.06598

Not really a surprise

similar problems for NLO BFKL
large transverse logarithms
collinear resummations
Mellin representation

(Salam, Ciafaloni, Colferai, Stasto,
98-03; Altarelli, Ball, Forte, 00-03)

Collinear improvement for NLO BK (transverse coordinates)
(E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)

Evolution becomes stable with promising phenomenology

excellents fits to DIS (Iancu et al, 2015; Albacete, 2015)
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Collinear improvement of NLO BK

Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor
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Negative at large pT

Rapidity subtraction in NLO 
impact factor

Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor

Various proposals which alleviate the problem (pushed to higher p?)
Kang, Vitev, and Xing, arXiv:1403.5221
Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869
Ducloué, Lappi, and Zhu, arXiv:1604.00225
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Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor

A reorganization of the perturbative expansion which avoids the
rapidity subtraction (E.I., A. Mueller and D. Triantafyllopoulos, 2016)

Sensible numerical results (positive cross-section)... and a new puzzle
(Ducloué, Lappi, and Zhu, arXiv:1703.04962)
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Towards NLO factorization in pA

The first gluon contributes both to the evolution (when x ⌧ 1) and to the
NLO impact factor (generic x) : How to avoid over counting ?

k?-factorization : use a ‘rapidity subtraction’

the method used by Chirilli, Xiao, and Yuan (arXiv:1203.6139)
leads to a negative cross-section at semi-hard k?

Our proposal (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

separate the first gluon emission from the evolution and compute it
with the exact kinematics

The integral representation of the BK equation is useful in that sense
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Rapidity subtraction in kT 
factorization (G. A. Chirilli, 
B.-W. Xiao, F. Yuan)



Edmond Iancu 
Particle production in pA collisions beyond leading order

Adding the NLO impact factor
Compute (only) the first gluon emission with the exact kinematics

dN

d⌘d2k
= S

0

(k) + ↵̄

s

Z
1

Xg

dx

x

K(k;x)S
�
k, X(x)

�
; X(x) ' X

g

x

K(k;x) : kernel for emitting a gluon with exact kinematics (x  1)

(Chirilli, Xiao, and Yuan, arXiv:1203.6139)

This cross-section is (almost) manifestly positive definite

LO evolution + NLO impact factor are mixed with each other

To recover the LO result: K(k;x) ! K(k; 0) (eikonal limit)
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Compute emission with exact kinematics

Recovering k?-factorization

Add and subtract the LO result:

dN

d⌘d2k
= S(k, X

g

) + ↵̄

s

Z
1

Xg

dx

x

⇥
K(x)�K(0)

⇤
S
�
k, X(x)

�

To NLO accuracy, one can perform additional approximations:

replace S
�
X(x)

�
' S(X

g

) (since integral dominated by x ⇠ 1)

... and set X
g

! 0 in the lower limit (‘plus prescription’)

Local in rapidity : k?-factorization in the form presented by CXY

(Chirilli, Xiao, and Yuan, arXiv:1203.6139)
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Numerical results: Running coupling
(Ducloué, Lappi, and Zhu, arXiv:1703.04962)
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d2kdy
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unsubtracted
subtracted

10
-1
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1

 0  5  10  15

k? [GeV]

NLO/LO

CXY

unsubtracted
subtracted

The running of the coupling renders the problem even more subtle:

already the “subtracted” result becomes negative

the “CXY” curve becomes negative even faster

Mismatch between the running coupling prescriptions used ...

in coordinate space (for solving the BK equation)

... and in momentum space (for computing the NLO impact factor)
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Sensible physical results: 
positive cross-section, but 
smaller than at LO 

The strict separation between a ‘LO result’ and ‘NLO corrections’ 
involves a high degree of fine tuning, leading to instabilities in the 
presence of seemingly innocuous additional approximations 
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• Energy logs from usual IR divergent phase space:

• Radiated gluon will induce softer radiation  
at later steps: dress with a Wilson line

Z
dLips(p0)|M3|2 ! |M2|2

Z Q

E0

dp0
p0

Z
d⌦

4⇡

↵12

↵10↵02

⇠ log(Q/Ecut)

Non-global logarithm

Presented result on two- and three-loop 
evolution for non-global logarithms

Computing non-global logs
• Soft gluon amplitude is universal:

• For a parent dipole:

[Weinberg]

|M3|2 ' s12
s10s02

|M2|2

lim
p0!0

Mn+1 =
X

i

✏ · pi
p0 · pi

gT a
i ⇥Mn

...

i

+
...

i

...

(a) (b)

Figure 4. Building block for next-to-leading order computation: amplitude for two soft particles.
Solid lines are eikonal Wilson lines. (a) Two soft gluons. The non-abelian part of the first graph gives
a connected contribution. (b) Two soft fermions or scalars.

• Finally, we did not prove in this subsection that divergences do exponentiate according

to eq. (2.7). We simply read o↵ the exponent from a one-loop fixed-order calculation.

Proofs to leading-logarithm accuracy are in refs. [10, 14] and an all-order demonstration

is given in section 5.

3 Evolution equation to next-to-leading order

We now present a calculation ofK to the next-to-leading order, by matching two-loop infrared

divergences in �[U ] against eq. (2.7). The computation will be phrased exclusively in terms

of convergent integrals over building blocks with a clear physical interpretation (renormalized

soft currents), which will shed light on the exponentiation mechanism. We perform the

computation in a general gauge theory, although at intermediate steps we only write formulas

for color-adjoint matter. The reader not interested in the technical details can skip directly

to the final result in subsection 3.6.

3.1 Building blocks: soft currents

A natural building block is the tree-level amplitude for emitting two soft gluons. It can be

written naturally as a sum of disconnected and connected contributions:

Sµ⌫,ab(k
1

, k
2

) = g2
X

i,j

Ra

i

Rb

j

Sµ

i

(k
1

)S⌫

j

(k
2

) + g2
X

i

ifabcRc

i

Sµ⌫

i

(k
1

, k
2

) +O(g4) , (3.1)

with Sµ

i

(k
1

) =
�

µ
i

�i·k1 the one-gluon soft current introduced previously. The connected part

Sµ⌫

i

(k
1

, k
2

) =
1

2�
i

·(k
1

+k
2

)



�µ

i

�⌫

i

�
i

·k
1

�
�µ

i

�⌫

i

�
i

·k
2

+
�µ⌫�

i

·(k
2

�k
1

) + 2(�µ

i

k⌫
1

� kµ
2

�⌫

i

)

k
1

·k
2

�

(3.2)

follows directly from the Feynman graphs shown in fig. 4(a) [25]. To optimize the notation

all color generators are implicitly symmetrized: Ra

i

Rb

j

! 1

2

{Ra

i

, Rb

j

}, which is relevant when

i = j. This notational convention (borrowed from ref. [31]) is why the connected part is

proportional to fabc.
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Look at this diagram in terms of 
energy and angular distribution

Exploits equivalence with the physics of soft wide-angle 
radiation, so-called non-global logarithms

19

�⇤ �⇤
+

1

2

0

• Similar to textbook computation of IR 
divergences, except angular integral ‘not global’!

• Real& virtual related by KLN [cancel for U=1]

E
d

dE
U12 =

�

8⇡2

Z
d2⌦0

4⇡

↵12

↵10↵02

�
U10U02 � U12

�
✔

[BMS eq]

• Quantitative equivalence:  

• Conformal (stereographic) transformation:

[Weigert ’03;
Hatta ’08-…] 

d

d⌘
U12 =

�

8⇡2

Z
d2z0
⇡

z212
z10z02

�
U10U02 � U12

�

E
d

dE
U12 =

�

8⇡2

Z
d2⌦0

4⇡

↵12

↵10↵02

�
U10U02 � U12

�

BK: Rapidity  
evolution

BMS: Soft 
evolution

↵ij ⌘
1� cos ✓ij

2

! z2ij ⌘ (zi�zj)
2,

d⌦

4⇡
! d2z

⇡

R
e
e R

duality

For two loops coincide with the result obtained in 
rapidity factorization and LCPT approaches
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Exploits equivalence with the physics of soft wide-angle 
radiation, so-called non-global logarithms

• Full non-planar NLO result also available (N=4&QCD)

26

3.6 Final result for the evolution equation

We record our final result for the two-loop Hamiltonian in the ‘Lorentz’ scheme (superscript `),

which combines eqs. (3.20)–(3.22) with the finite renormalizations (3.26) and (3.30). For con-

venience we repeat the color structures, switching to the integro-di↵erential notation (2.17):
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,

the color rotations L and R being di↵erential operators defined in eq. (2.17). All products

of La

i

’s and Ra

i

’s are implicitly symmetrized and normal-ordered to the right of U
0

, U
0

0 . The

third term is simply the one-loop result (2.14) times the cusp anomalous dimension (3.22).

The angular functions are:
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This is the complete result in N = 4 SYM. In a general gauge theory with n
F

flavors of Dirac

fermions and n
S

complex scalars in the representation R, there additional contributions from

matter loops, also obtained in eq. (3.12). Upon restoring group theory factors corresponding

to representation R, in accordance with the square of fig. 4(b), these can be written:
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All sums are individually Lorentz-invariant (invariant under rescalings of the individual �
i

).

The first term is the contribution of two chiral N = 1 multiplets (minus the four adjoints in

N = 4 SYM) and the second term collects remaining scalars; b
0

= 1

3

(11C
A

�4n
F

T
R

�n
S

T
R

).
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[SCH ’15]

Precisely the same as NLO B-JIMWLK result
[Kovner,Mulian&Lublinski ’14,  

Balitsky&Chirilli ’14](cf ’s Lublinski’s talk)

known

3.6 Final result for the evolution equation

We record our final result for the two-loop Hamiltonian in the ‘Lorentz’ scheme (superscript `),

which combines eqs. (3.20)–(3.22) with the finite renormalizations (3.26) and (3.30). For con-
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This is the complete result in N = 4 SYM. In a general gauge theory with n
F

flavors of Dirac

fermions and n
S

complex scalars in the representation R, there additional contributions from

matter loops, also obtained in eq. (3.12). Upon restoring group theory factors corresponding

to representation R, in accordance with the square of fig. 4(b), these can be written:
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All sums are individually Lorentz-invariant (invariant under rescalings of the individual �
i

).

The first term is the contribution of two chiral N = 1 multiplets (minus the four adjoints in

N = 4 SYM) and the second term collects remaining scalars; b
0

= 1

3

(11C
A

�4n
F

T
R

�n
S

T
R

).

– 21 –

3.6 Final result for the evolution equation

We record our final result for the two-loop Hamiltonian in the ‘Lorentz’ scheme (superscript `),

which combines eqs. (3.20)–(3.22) with the finite renormalizations (3.26) and (3.30). For con-

venience we repeat the color structures, switching to the integro-di↵erential notation (2.17):
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Here ↵
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the color rotations L and R being di↵erential operators defined in eq. (2.17). All products

of La

i

’s and Ra

i

’s are implicitly symmetrized and normal-ordered to the right of U
0

, U
0

0 . The

third term is simply the one-loop result (2.14) times the cusp anomalous dimension (3.22).
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This is the complete result in N = 4 SYM. In a general gauge theory with n
F

flavors of Dirac

fermions and n
S

complex scalars in the representation R, there additional contributions from

matter loops, also obtained in eq. (3.12). Upon restoring group theory factors corresponding

to representation R, in accordance with the square of fig. 4(b), these can be written:
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All sums are individually Lorentz-invariant (invariant under rescalings of the individual �
i

).

The first term is the contribution of two chiral N = 1 multiplets (minus the four adjoints in

N = 4 SYM) and the second term collects remaining scalars; b
0

= 1

3

(11C
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�n
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R
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✔

Used duality to construct NLO evolution and NNLO 
evolution kernel in N = 4 SYM.
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Finding small-x physics in small-x jets

Non-global logarithms (log. of 
infra-red energy scale) vs. soft jet 
factorization theorems

Evolution through study of jet 
substructure

The Bu↵er Region and Phenomonolgy of Soft jets
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Resummation of Sudakov
E↵ects:
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Cross-section for
production of a jet at the
boundary vanishes!

“Bu↵er Region” noticed in
Monte Carlo by
[Dasgupta,Salam].

Existence implies finite
region of convergence
(L = 1) for LL series [DN
et. al.].

Du↵ Neill Finding small-x physics in final state jets

almost BK equation

At large values of non-global logarithm L it is 
possible to simplify it to the BFKL equation

Evolution of color dipoles

BMS equation at large Nc

Evolution of Color Dipoles:
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Full color evolution ! reduced density matrix [Wiegert,
Caron-Huot, Nagy-Soper, Hatta et al.].
EFT interpretation and small R[Becher et. al.].
Evolution equation related to factorization for jet
substructure [Larkoski, DN, Moult; DN].

Du↵ Neill Finding small-x physics in final state jets

One can introduce cut-
off, “thrust” (effectively 
cut-off in energy)

BMS equation at large Nc

Evolution of Color Dipoles:
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Full color evolution ! reduced density matrix [Wiegert,
Caron-Huot, Nagy-Soper, Hatta et al.].
EFT interpretation and small R[Becher et. al.].
Evolution equation related to factorization for jet
substructure [Larkoski, DN, Moult; DN].

Du↵ Neill Finding small-x physics in final state jets

Resummation of Sudakov effects

BMS eqn. is (almost) the BK eqn.

If J = S2 and the theory is conformal, and ignore
initial conditions, then
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Du↵ Neill Finding small-x physics in final state jets
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Medium induced transverse momentum broadening in hard processes

A.H. Mueller, Bin Wu, Bo-Wen Xiao and Feng Yuan, 
Phys.Rev. D95 (2017), 034007

Transverse momentum broadening of partons in 
hard processes in the presence of medium.

Factorize the vacuum radiation contribution and medium 
related PT broadening effects into the Sudakov factor and 
medium dependent distributions, respectively.

the randomizing effects of the Sudakov radiation. This is
exhibited in (44).
In Sec. III B, running coupling effects are introduced

and we no longer suppose that Q2 lie in the scaling region
of the small-x evolution. The three different regions of
Fig. 6 give very similar results as compared to the fixed
coupling case. The first region, where Q2 is not so large,
shows no Sudakov modification of the spectrum of trans-
verse momentum broadening. The next region of somewhat
larger Q2 again has a simple Sudakov factor [see (52)]
modifying the small-x answer. Finally, the large Q2 region
again completely eliminates all k⊥-dependence, as given
in (59).
In the case where τq ≫ L, q̂-effects are not very visible,

since they are hidden in the initial distribution for the small-
x evolution. In Sec. III C we show explicitly how q̂-effects,
and radiative corrections to q̂, come into the initial
condition for small-x evolution. If there were no radiative
corrections to q̂, the initial condition for small-x evolution
is just the scattering matrix for a dipole given by the
McLerran-Venugopalan model. If one uses q̂t rather than q̂
in the MV model initial condition then evolution in the
medium is also included and will show up as an enhance-
ment of Q2

s . We conclude and summarize in Sec. IV.

II. LARGE MEDIUM FORWARD JET
PRODUCTION IN DIS

A. The basic formulas

We begin our discussions of forward jet production in
deep inelastic scattering (DIS) on a large nucleus in the case
τq ¼

2qþ
Q2 is much less than the length of the medium. For a

scattering at impact parameter b in the nucleus, the nuclear
medium length is L ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
with R the nuclear

radius. The (transverse) virtual photon initiating the process
has momentum qμ with qμ ¼ ðqþ; q− ¼ − Q2

2qþ
; q⊥ ¼ 0Þ.

The process is illustrated in Fig. 1 where the forward quark
(or antiquark) has momentum k and travels a distance z in
the medium after its production. In the current situation of
τq=L ≪ 1, this production can take place on a definite
nucleon in the nucleus with that nucleon at a distance L − z
from the front face of the nucleus. In Refs. [28–30], a

similar process has been considered to study the modifi-
cation of average transverse momentum squared due to the
medium effects. In this paper, we focus on the transverse
momentum spectrum, where all the relevant QCD dynam-
ics play important roles.
In this large-x process there is no small-x evolution.

However, there is the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the quark distribution of the
struck nucleon, the Sudakov effects due to the hard
scattering and the measurement of the forward quark,
and finally the multiple scattering and medium induced
radiation of the outgoing quark. At the moment we do not
introduce a cone condition for the produced quark jet nor
do we consider the fragmentation of the quark. These can
be included accordingly for a complete evaluation of the
forward jet electroproduction. Our purpose here is to
illustrate in a simple context the various effects that may
occur in jet production in a medium.
The transverse momentum spectrum of the quark is

given by

dN
d2bd2k⊥

¼
Z

d2x⊥
ð2πÞ2

e−ik⊥·x⊥ρxqN

"
x;

1
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#

×
Z

L

0
dze−E ; ð1Þ

where

E ¼ q̂x2⊥z=4þ ESud þ EMedium Induced Radiation ðMIRÞ; ð2Þ

with the quark transport coefficient

q̂ ¼ CF

Nc

4π2αsNc

N2
c − 1

ρxGðxÞ: ð3Þ

Here, ρ is the nucleon density and xG the nucleon’s
gluon distribution, while xqN the quark distribution of a
nucleon should be evaluated at a scale x2⊥, that is
qN ¼ qNðx; 1

x2⊥þ1=Q2Þ. When x⊥ ¼ 0, see below, one gets

qN as the quark distribution at the hard scattering scale. The
various terms of Eq. (2) can be interpreted as follows: q̂
term accounts for multiple scattering as the quark passes
through the nucleus; ESud accounts for the real and virtual
Sudakov corrections, which are medium independent,
induced by the hard scattering; and EMIR accounts for
gluonic radiative corrections which involve a single scat-
tering in the medium. We are especially interested in
evaluating Eq. (1) in the regime where k⊥ is not too far
from its typical value for an event. Then x2⊥ ∼ 1=k2⊥ in (1),
and the Sudakov contributions all come from (virtual)
corrections having transverse momenta satisfying
l2⊥ ≫ 1=x2⊥, as seen in the lower limit of the dl2⊥ integral
in Eq. (7), below. Since such values of l2⊥ are much greater
than q̂L, the Sudakov corrections are medium independent,

FIG. 1. Forward jet production in DIS on a large nucleus in the
large-x region.
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the randomizing effects of the Sudakov radiation. This is
exhibited in (44).
In Sec. III B, running coupling effects are introduced

and we no longer suppose that Q2 lie in the scaling region
of the small-x evolution. The three different regions of
Fig. 6 give very similar results as compared to the fixed
coupling case. The first region, where Q2 is not so large,
shows no Sudakov modification of the spectrum of trans-
verse momentum broadening. The next region of somewhat
larger Q2 again has a simple Sudakov factor [see (52)]
modifying the small-x answer. Finally, the large Q2 region
again completely eliminates all k⊥-dependence, as given
in (59).
In the case where τq ≫ L, q̂-effects are not very visible,

since they are hidden in the initial distribution for the small-
x evolution. In Sec. III C we show explicitly how q̂-effects,
and radiative corrections to q̂, come into the initial
condition for small-x evolution. If there were no radiative
corrections to q̂, the initial condition for small-x evolution
is just the scattering matrix for a dipole given by the
McLerran-Venugopalan model. If one uses q̂t rather than q̂
in the MV model initial condition then evolution in the
medium is also included and will show up as an enhance-
ment of Q2

s . We conclude and summarize in Sec. IV.

II. LARGE MEDIUM FORWARD JET
PRODUCTION IN DIS

A. The basic formulas

We begin our discussions of forward jet production in
deep inelastic scattering (DIS) on a large nucleus in the case
τq ¼

2qþ
Q2 is much less than the length of the medium. For a

scattering at impact parameter b in the nucleus, the nuclear
medium length is L ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − b2

p
with R the nuclear

radius. The (transverse) virtual photon initiating the process
has momentum qμ with qμ ¼ ðqþ; q− ¼ − Q2

2qþ
; q⊥ ¼ 0Þ.

The process is illustrated in Fig. 1 where the forward quark
(or antiquark) has momentum k and travels a distance z in
the medium after its production. In the current situation of
τq=L ≪ 1, this production can take place on a definite
nucleon in the nucleus with that nucleon at a distance L − z
from the front face of the nucleus. In Refs. [28–30], a

similar process has been considered to study the modifi-
cation of average transverse momentum squared due to the
medium effects. In this paper, we focus on the transverse
momentum spectrum, where all the relevant QCD dynam-
ics play important roles.
In this large-x process there is no small-x evolution.

However, there is the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) evolution of the quark distribution of the
struck nucleon, the Sudakov effects due to the hard
scattering and the measurement of the forward quark,
and finally the multiple scattering and medium induced
radiation of the outgoing quark. At the moment we do not
introduce a cone condition for the produced quark jet nor
do we consider the fragmentation of the quark. These can
be included accordingly for a complete evaluation of the
forward jet electroproduction. Our purpose here is to
illustrate in a simple context the various effects that may
occur in jet production in a medium.
The transverse momentum spectrum of the quark is

given by
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where

E ¼ q̂x2⊥z=4þ ESud þ EMedium Induced Radiation ðMIRÞ; ð2Þ

with the quark transport coefficient

q̂ ¼ CF

Nc

4π2αsNc

N2
c − 1

ρxGðxÞ: ð3Þ

Here, ρ is the nucleon density and xG the nucleon’s
gluon distribution, while xqN the quark distribution of a
nucleon should be evaluated at a scale x2⊥, that is
qN ¼ qNðx; 1

x2⊥þ1=Q2Þ. When x⊥ ¼ 0, see below, one gets

qN as the quark distribution at the hard scattering scale. The
various terms of Eq. (2) can be interpreted as follows: q̂
term accounts for multiple scattering as the quark passes
through the nucleus; ESud accounts for the real and virtual
Sudakov corrections, which are medium independent,
induced by the hard scattering; and EMIR accounts for
gluonic radiative corrections which involve a single scat-
tering in the medium. We are especially interested in
evaluating Eq. (1) in the regime where k⊥ is not too far
from its typical value for an event. Then x2⊥ ∼ 1=k2⊥ in (1),
and the Sudakov contributions all come from (virtual)
corrections having transverse momenta satisfying
l2⊥ ≫ 1=x2⊥, as seen in the lower limit of the dl2⊥ integral
in Eq. (7), below. Since such values of l2⊥ are much greater
than q̂L, the Sudakov corrections are medium independent,

FIG. 1. Forward jet production in DIS on a large nucleus in the
large-x region.
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as q̂L is the natural momentum scale separating contribu-
tions which are medium dependent from those which are
not medium dependent. As we shall see below, the q̂ and
EMIR terms in (2) can be combined into a more complete q̂,
which we shall call q̂t ≡ q̂total, where

q̂tx2⊥z=4 ¼ q̂x2⊥z=4þ EMIR: ð4Þ

Then the z-integral in (1) can be done giving

dN
d2bd2k⊥

¼
Z

d2x⊥
x2⊥

ρxqNðx; 1
x2⊥þ1=Q2Þ

π2q̂t

× e−ik⊥·x⊥ð1 − e−q̂tx
2
⊥L=4Þe−ESud : ð5Þ

The right-hand side of (5) has the form of an unintegrated
Weizsacker-Williams quark distribution in analogy with the
Weizsacker-Williams (WW) [31–33] gluon distribution.
We note that

Z
dN

d2bd2k⊥
d2bd2k⊥ ¼ AxqN: ð6Þ

The Sudakov factor in (5) is naturally included as part of
the WW quark distribution since the usual Wilson line of
theWW distribution implicitly includes the Sudakov factor,
see the discussions below.

B. The Sudakov factor

In order to evaluate the Sudakov term, and later the EMIR
term, it is convenient to bring the complex conjugate
amplitudes in Fig. 1 into the amplitude and view the
process as in Fig. 2 [34,35]. In Fig. 2 we have taken the
virtual photon to interact on the front face of the nucleus so
that the quark goes through a length L of nuclear matter. We
have also added a gauge link at t ¼ ∞ to make the process
manifestly gauge invariant, and we have indicated a gluon
line l which is emitted, and absorbed by the 0⊥ and x⊥
quark and antiquark lines. (Emission and reabsorption of l
off 0⊥ corresponds to a virtual correction to the quark line
in the amplitude of Fig. 1. Emission and reabsorption off x⊥

corresponds to a virtual correction to the quark line in the
complex conjugate amplitude of Fig. 2 while emission off
0⊥ (x⊥) and absorption off x⊥ (0⊥) corresponds to a real
gluon emission correction to the graph in Fig. 1.)
Now the evaluation of ESud is straightforward [20,21]

ESud ¼ 2
αsCF

2π

Z
qþ

qþ=½Q2x2⊥&

dlþ
lþ

Z lþ
qþ

Q2

1=x2⊥

dl2⊥
l2⊥

¼ αsCF

2π
ln2ðQ2x2⊥Þ: ð7Þ

The various limits to the l2⊥ and lþ integration are
determined as: (i) The lower limit to the l2⊥ integration
comes from the fact that the softer l⊥-values cancel
between emissions (absorptions) off the 0⊥ and x⊥ lines.
(ii) The upper limit of the l2⊥-integration comes from the
requirement that τl > τq. This is shown in some detail in
Appendix A. The limits on the lþ-integration are manifest.
The logarithmic contribution given in (7) comes completely
from the virtual contributions as described above. The real
emissions serve only to cancel the virtual emissions in the
l2⊥x

2
⊥ ≪ 1 region.
The lifetime, τl ¼

2lþ
l2⊥
, can be either less than L or greater

than L in (7) so that the gluon, l, will sometimes exist
within the medium. However, the gluon is too close to
either the quark 0⊥ or antiquark (x⊥) for the interactions
with the medium to distinguish, say, the quark-l system
from the quark so that medium interactions with the gluon
cancel out leaving the Sudakov term medium independent.
It is interesting to note that the Sudakov effects occur

when a dipole is created in a medium, as given by (1) and
illustrated in Fig. 2, however there are no Sudakov effects
in dipole nucleus scattering where the t < 0 and t > 0
regions occur in a symmetric way and there is no hard
reaction to stimulate radiation.
If Q is very large then the typical values of k⊥ for which
dN

d2bd2k⊥
is large will be determined by ESud given in (7) and

used in (1) rather than by q̂ or q̂t [26]. This is the situation
for jet azimuthal angle distributions measured in ion-ion
collisions at the LHC where Sudakov effects overwhelm q̂
effects [26]. The interplay of Sudakov and q̂ effects in (1) is
an essential factor for dijet production in heavy ion
collisions. Theoretically, in the case that Sudakov effects
are the dominant broadening effects, the radiative correc-
tions to q̂ leading to q̂t changes from the standard
calculations of Refs. [36,37], which will be discussed in
the following subsection.

C. Radiative corrections to q̂

In the previous evaluation of the radiative corrections
(double logarithmic) to q̂ [36–39], one considers gluon
emission from a dipole, similar to that in Fig. 2. However,
in this case, the gluon interacts with the mediummaking theFIG. 2. Forward jet production in DIS in dipole model.
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effect medium dependent, as a correction to q̂. The effective
value of x2⊥ of the dipole is x2⊥ ∼ 1=ðq̂LÞ ¼ 1=Q2

s when
transverse momentum broadening is q̂ dominated. If,
however, the broadening is Sudakov dominated the value
of x2⊥ will change and a new evaluation is necessary. At
lowest order the radiative correction to q̂ is illustrated in
Fig. 3 and given by

q̂t ¼ q̂
!
1þ αsNc

π

Z
dl2⊥
l2⊥

Z
dlþ
lþ

"
; ð8Þ

where the limits of integration have yet to be set. q̂, as
earlier, is the quark transport coefficient and we work in the
fixed coupling approximation. The limits of integration in
(8) are set by the following constraints:

2lþ
l2⊥

< L; ð9Þ

2lþ
l2⊥

<
l2⊥
q̂
; ð10Þ

2lþ
l2⊥

> r0; ð11Þ

l2⊥ <
1

x2⊥
; ð12Þ

lþ < qþ: ð13Þ

The physics meanings of the above constraints are as
follows: (9) is the constraint that the gluon, l, be within the
medium; (10) is a single scattering requirement, necessary
to get a double logarithm; (11) requires that the fluctuation
live longer than the proton size, r0; (12) requires that the
gluon transverse distance from the dipole is greater than the
dipole size, which is necessary for a double logarithm to
emerge. In particular, (10) is a stronger requirement than (9)
when l2⊥ < q̂L, while (9) is the stronger requirement
when q̂L < l2⊥ < 1=x2⊥. Much of what follows can also

be found in [40]. We include this simplified discussion for
completeness.
Let us start with 1=x2⊥ > q̂L. Writing (8) more com-

pletely and using the constraints of (9)–(13), we arrive at,

q̂t − q̂ ¼ ᾱsq̂
#Z

q̂L

q̂r0

dl2⊥
l2⊥

Z
ðl2⊥Þ

2=q̂

l2⊥r0

dlþ
lþ

þ
Z

1=x2⊥

q̂L

dl2⊥
l2⊥

Z
l2⊥L

l2⊥r0

dlþ
lþ

$
; ð14Þ

or

q̂t − q̂ ¼ ᾱsq̂ ln
L
r0

!
1

2
ln

L
r0

þ ln
1

q̂Lx2⊥

"
; ð15Þ

where ᾱs ≡ αsNc=π. In order to sum the whole series of
double logs it is convenient to introduce the following
logarithmic variables

K ¼ ln
1

q̂r0x2⊥
; K1 ¼ ln

l2⊥
q̂r0

; ð16Þ

τ ¼ ln
L
r0
; τ1 ¼ ln

lþ
l2⊥r0

: ð17Þ

With these notations, Eq. (14) takes the form

q̂t − q̂ ¼ ᾱsq̂
Z

τ

0
dτ1

Z
K

τ1

dK1 ¼ ᾱsq̂
#
Kτ −

1

2
τ2
$
: ð18Þ

The domain of integration for K1, τ1 in (18) is shown in the

left panel of Fig. 4. The boundary 2lþ
l2⊥

¼ l2⊥
q̂ given in (10)

becomes the boundary τ1 ¼ K1 in Fig. 4. It is now
straightforward to sum the complete double logarithmic
series as

q̂t ¼ q̂
X∞

n¼0

Δn; ð19Þ

where

Δn ¼ Πn
i¼1ᾱs

Z
τiþ1

0
dτi

Z
Kiþ1

τi

dKi ð20Þ

with τnþ1 ¼ τ and Knþ1 ¼ K in (20). Therefore, we find
that Δn obeys the following equation,

∂
∂τ

∂
∂KΔnðτ; KÞ ¼ ᾱsΔn−1ðτ; KÞ; ð21Þ

which, with (18), gives
FIG. 3. Radiative correction to dipole-nucleus scattering in
dipole model.
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certainty estimates including also the projected RHIC
data only slightly increase towards smaller x reflecting
the improvements in the running integral already ob-
served in Fig. 4. The constraining power of the EIC DIS
data is very significant in the entire x range and appears
to be roughly a constant factor of 2 − 3 with respect to
the bin-by-bin estimates including the projected RHIC
data. This is somewhat less than what was obtained for
the running integral at low xmin, suggesting that scal-
ing violations are more powerful when considered over
an extended range of momentum fractions rather than
in a small bin in x. In the latter case much fewer data
points are actually providing a strong constraint on al-
lowed variations in any given bin. Another important
factor to consider are the mentioned sizable bin-by-bin
correlations. Similarly, the impact of including more DIS
sets at different c.m.s. energies is reduced for the bin-by-
bin studies as compared to running integral shown in
Fig. 4.

IV. STATUS AND PROSPECTS FOR ∆Σ AND
THE TOTAL OAM CONTRIBUTION

Similarly to what has been discussed in the previous
Section in connection with the gluon helicity density, the
running integral of the quark singlet ∆Σ(x,Q2) repre-
sents the intrinsic spin contribution of all quark flavors
in the decomposition of the proton spin (2). Thanks to
the direct coupling of the quarks to the probing virtual
photon in DIS, ∆Σ(x,Q2) is much better constrained by
present fixed target data than the gluon helicity distri-
bution which only enters indirectly through QCD scale
evolution or as an O(αs) correction. Since ∆Σ(x,Q2)
and ∆g(x,Q2) are coupled through the singlet evolution
equations, any constraint from data on either of the two
distributions impacts also the other one.
An extraction of the quark singlet from DIS data

on g1(x,Q2) also requires to determine simultaneously
two additional flavor non-singlet distributions, which, if
needed, can be all recast into the total contributions
from u, d, and s quarks, i.e., ∆u + ∆ū, ∆d + ∆d̄, and
∆s+∆s̄ (here we ignore for simplicity any contribution
from charm and bottom quarks, which play no role for
all currently available data).
The x-integrals of the two non-singlet combinations are

usually assumed to be related to the hyperon decay con-
stants F and D within some uncertainties, which provide
some indirect constraint for the currently unmeasured
small x region below a few times 10−3. Since we only
wish to focus on the quark flavor singlet in this paper,
we adopt these constraints in the same way as was done
in the DSSV global analyses. A more thorough analysis
of flavor separated quark helicity densities and their un-
certainties will be conducted once a fully updated suite
of reliable sets of fragmentation functions becomes avail-
able to revisit our previous impact study of SIDIS data
in Ref. [8]. Then we will also explore how well an EIC
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FIG. 7: [color online] Similar to Fig. 4 but now for the running
integral of the quark singlet helicity density ∆Σ. The solid
line corresponds to the optimum fit of DSSV 2014 [17]. 90%
C.L. uncertainty estimates (shaded bands) are shown for the
DSSV 2008 and 2014 analyses and after including the different
sets of projected EIC data.

can challenge the constraints imposed on the quark sec-
tor by the hyperon decays, one of which being related
to the Bjorken sum rule, the other, more important one
mainly to the amount of strangeness polarization in the
nucleon.

In Fig. 7 we show 90% C.L. estimates for the running
integral of ∆Σ(x,Q2) as a function of xmin for Q2 =
10GeV2 for fits including different sets of existing and
projected data. One should notice that the vertical axis
here covers only half of the range shown for the running
integral of ∆g in Fig. 4. Also, ∆Σ(Q2) enters the spin
sum rule (2) with a factor of 1/2 relative to the gluon
spin contribution.

The outermost shaded band represents uncertainties as
present in the original DSSV global analysis from 2008
[9]. They appear to be very significant for xmin ! 10−3.
As usual, the solid line shows the optimum fit of DSSV
2014 extrapolated down in x. The corresponding uncer-
tainties are much reduced as compared to the 2008 anal-
ysis due to including additional DIS data from the COM-
PASS collaboration and, indirectly, through constraints
on ∆g from RHIC pp data [15, 16].

The set of three innermost shaded bands illustrates
the significant impact of an EIC from a series of global
fits that successively include the projected DIS data
sets starting from the one corresponding to the lowest
c.m.s. energy. The addition of the sets with increasing
c.m.s. energy has less impact on the uncertainties than
for the gluon helicity distribution shown in Fig. 4. For
xmin = 10−6 and with an EIC, one expects from our stud-
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Polarized 
interaction

Polarized	Dipole
• All	flavor	singlet	small-x	helicity	observables	depend	on	one	object,	

“polarized	dipole	amplitude”:

• Double	brackets	denote	an	object	with	energy	suppression	scaled	out:
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polarized	quark:	eikonal propagation,
non-eikonal spin-dependent	interaction
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dipole amplitude

Matthew D. Sievert 
Quark helicity evolution at small x



Yuri Kovchegov 
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Evolution	for	Polarized	Quark	Dipole

∂Y

1

0 0

0

0

0

0

1

1

1

1

1

2

2

2

2

2

One	can	construct	an	evolution	equation	for	the	polarized	dipole:

Spin-dependent	(non-eikonal)	vertex
polarized
particle

box	=
target	shock
wave

similar	to	
unpolarized
BK	evolution

10

Polarized	Dipole	Evolution	in	the	Large-Nc Limit
In	the	large-Nc limit	the	equations	close,	leading	to	a	system	of	2	equations:	
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S	=	found	from	BK/JIMWLK,	it	is	LLA 13

Found evolution equation 
for polarized dipole

Solution	of	the	large-NC Equations

• The	resulting	small-x	asymptotics is

• Our	result,	2.31,	is	about	35%	smaller	than	BER’s	3.66	any-NC	pure	glue.
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Impact	on	proton	spin
• Defining																																																														we	plot	it		for	x0=0.03,	0.01,	

0.001:

• We	observe	a	moderate	to	significant	enhancement	of	quark	spin.	
• More	detailed	phenomenology	is	needed	in	the	future.	
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Analytic	Solution	and	Intercept
• The	contribution	of	the	pole	at	" = + 3� is

• The	corresponding	helicity	intercept	is

• This	is	in	complete	agreement	with	the	numerical	solution!
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Rapidity factorization for particle production

Sudakov variables:
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2
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We integrate over “central” fields in the background of projectile and
target fields.
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1 Introduction

Particle production in hadron-hadron scattering with transverse momentum of produced
particle much smaller than its invariant mass is described in the framework of TMD fac-
torization [1–5]. The typical example is the Higgs production at LHC through gluon-gluon
fusion. Factorization formula for particle production in hadron-hadron scattering looks like
[1, 6]

d�

d⌘d2q?
=

X

f

Z

d2b?ei(q,b)?Df/A(xA, b?, ⌘)Df/B(xB, b?, ⌘)�(ff ! H)

+ power corrections + Y � terms (1.1)

where ⌘ is the rapidity, Df/A(x, z?, ⌘) is the TMD density of a parton f in hadron A, and
�(ff ! H) is the cross section of production of particle H of invariant mass m2

H = Q2

in the scattering of two partons. (For simplicity, we consider the scattering of unpolarized
hadrons.)

In this paper we calculate the first power corrections ⇠ q2?
Q2 in a sense that we represent

them as a TMD-like matrix elements of higher-twist operators. It should be noted that our
method works for arbitrary relation between s and Q2 and between q2? and hadron mass

– 1 –

What is a form of the corrections to this result (Y-term)?

TMD Col.Int.

q?
What is going on here 
(corrections to the TMD 
factorization)

Corrections are suppressed as
q2?
Q2
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The higher-twist correction coming from the second term in the r.h.s. will be ⇠ Q2
?

Q2 whereas

other terms in the r.h.s. of Eq. (3.41) yield contributions ⇠ Q2
?
s , ⇠ Q2

?
↵qs

, or ⇠ Q2
?

�qs
all of

which are small (see the footnote 9). In this approximation we get

g4F 2
(x)F 2

(0) =
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s2
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⇤ (x)V m

•i (x)U
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d
l (0)

⇤

(4.3)

where the first term is the leading order and the second is the higher-twist correction.
Substituting our approximation (4.1) to Eq. (2.3) and promoting background fields to

operators as discussed in Sect. 2 we get (note that ↵q�qs = Q2
k ' Q2):
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(4.4)

where we used formula [25, 26]

facmf bdmdabndcdn =

1

2

(N2
c � 1)(N2

c � 4) (4.5)

Since an extra U⇤k (or V•k) brings s xi

x2
?

10 we see that the higher-twist correction

in the r.h.s of Eq. (4.4) is ⇠ q2?
Q2 so it gives the leading power correction in the region

s � Q2
= m2

� � q2? � m2. The TMD factorization formula with the higher-twist
correction (4.4) is the main result of the present paper.

We parametrize gluon TMD for unpolarized protons as (cf. Ref. [27])

4

s2g2

Z

dx⇤
Z

d2x? e�i�qx⇤+i(k,x)? hpB|V a
•i(x⇤, x?)V

a
•j(0)|pBi

= � ⇡�q
h

gijDg(�q, k
2
?;�b)�

�

2

kikj
m2

+ gij
k2?
m2

�

Hg(�q, k
2
?;�b)

i

(4.6)

where �b is the cutoff in ↵ integration in the target matrix elements, see the discussion
in Ref. [18]. The normalization here is such that Dg(�q, k2?;�b) is an unintegrated gluon
distribution:

Z

d�2k?Dg(�q, k
2
?;�b) = Dg(�q, µ

2
= �b�qs) (4.7)

10To see this, we compared matrix elements of leading-twist operator hpA|Umi
⇤ (x•, x?)U

mj
⇤ (0)|pAi and

higher-twist operator hpA|Ua
⇤i(x•, x?)U

b
⇤j(x

0
•, x?)U

c
⇤r(0)|pAi between quark states which gives an extra s

xr

x2
?

modulo some logarithms.
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Leading order result

Product of two distribution 
functions

Subleading term 
(suppressed as 1/Q2)

TMD Col.Int.

q?

Ian Balitsky, A.T., arXiv:1706.01415
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Low x physics and prompt neutrino production

Prompt neutrinos - decay of 
charmed or bottom mesons

11

 Hybrid kT factorization calculation
• Use kT factorization with off-shell gluon and unintegrated parton density.

• Suitable for the high energy - low x regime.

• Since it is forward production, use hybrid calculation: treat large x gluon as collinear, and small x 
gluon as off-shell.

Heavy quark production

kT-factorization

• The HQ pair production cross section in hybrid formalism:

�(pp ! qq̄X) =

Z
dx

1

x

1

dx

2

x

2

dz dxF �(zx
1

� xF )x1

g(x
1

,MF )

⇥
Z

dk

2

T

k

2

T

�̂o�(z, ŝ, kT ) f(x2

, k

2

T )

- collinear approximation for the incoming parton from the CR particles.
- kT factorization for the low x parton from target nucleus

• The small x resummation is incorporated in the unintegrated PDF. 
• Parton saturation can be included through nonlinear evolution of the 

unintegrated parton density

off-shell gluon with kT dependence

collinear gluon

c

c̄

collinear

kT

incoming cosmic ray

target air nucleus

• Unintegrated gluon with small x effects

• Can also include saturation

Hybrid kT factorization 
calculation

11

 Hybrid kT factorization calculation
• Use kT factorization with off-shell gluon and unintegrated parton density.

• Suitable for the high energy - low x regime.

• Since it is forward production, use hybrid calculation: treat large x gluon as collinear, and small x 
gluon as off-shell.

Heavy quark production

kT-factorization

• The HQ pair production cross section in hybrid formalism:

�(pp ! qq̄X) =

Z
dx

1

x

1

dx

2

x

2

dz dxF �(zx
1

� xF )x1

g(x
1

,MF )

⇥
Z

dk

2

T

k

2

T

�̂o�(z, ŝ, kT ) f(x2

, k

2

T )

- collinear approximation for the incoming parton from the CR particles.
- kT factorization for the low x parton from target nucleus

• The small x resummation is incorporated in the unintegrated PDF. 
• Parton saturation can be included through nonlinear evolution of the 

unintegrated parton density

off-shell gluon with kT dependence

collinear gluon

c

c̄

collinear

kT

incoming cosmic ray

target air nucleus

• Unintegrated gluon with small x effects

• Can also include saturation

Unintegrated gluon density obtained from 
the resummed small x evolution equation 
with non-linear term

Total charm production cross section

• For pQCD calculation using NLO 
code by Cacciari, Frixione, Greco, 
Nason.

• Charm quark mass 

• Comparison with RHIC and LHC 
data. Data are extrapolated with NLO 
QCD from measurements in the 
limited phase space region.

• All models describe the data  very 
well at high energies.

• Nuclear effects are very small for the 
total cross section

• kT factorization suitable for the 
description at high energy; 
underestimates the data at lower 
energy; need additional diagrams 
there to match to NLO pQCD

mc = 1.27 GeV

Expt.
�
s [TeV] � [mb]

PHENIX [31] 0.20 0.551

+0.203
�0.231 (sys)

STAR [32] 0.20 0.797± 0.210 (stat)+0.208
�0.295 (sys)

ALICE [27] 2.76
4.8± 0.8 (stat)+1.0

�1.3 (sys)± 0.06 (BR)

±0.1(frag)± 0.1 (lum)+2.6
�0.4 (extrap)

ALICE [27] 7.00
8.5± 0.5 (stat)+1.0

�2.4 (sys)± 0.1 (BR)

±0.2(frag)± 0.3 (lum)+5.0
�0.4 (extrap)

ATLAS [28] 7.00
7.13± 0.28 (stat)+0.90

�0.66 (sys)

±0.78 (lum)+3.82
�1.90 (extrap)

LHCb [30] 7.00 6.100± 0.930

Table 1: Total cross-section for pp(pN) � cc̄X in hadronic collisions, extrapolated based

on NLO QCD by the experimental collaborations from charmed hadron production mea-

surements in a limited phase space region.

2 Charm production cross section

The PeV energy range for atmospheric neutrinos corresponds to an incident energy E

p

�
30 PeV for pA fixed target interactions. The LHC center of mass energy

�
s = 7 TeV

is equivalent to a fixed target beam energy in pp collisions of E
b

= 26 PeV. The LHC

measurements of the charm production cross section [27–30] together with recent RHIC

[31, 32] and modern parton distribution functions (PDFs) have narrowed down some of the

uncertainty in the rate of charm production in the atmosphere. The experimental results

at high energy for the charm production cross-section in hadronic collisions are listed in

Table 1.

In Ref. [33], Nelson, Vogt and Frawley have investigated a range of factorization and

renormalization scales using the CT10 PDF’s [34] and the NLO order QCD calculation of

Nason, Dawson and Ellis [35, 36]. Using a charm quark mass central value of m
c

= 1.27

GeV based on lattice QCD determinations of the charm quark mass, as summarized in

Ref. [37], and a combination of fixed target, PHENIX, and STAR charm production cross-

sections, they find that M

F

/m

c

= 1.3–4.3 and µ

R

/m

c

= 1.7–1.5 with M

F

= 2.1m
c

and

µ

R

= 1.6m
c

as central values. We use these values of parameters as a guide to the range

of theoretical NLO charm cross sections expected at high energies.

In our calculation we use the NLO Fortran code of Cacciari et al. [38, 39] that includes

the total cross section [35] as well as the single [36] and double di�erential [40] distributions

of charm (i.e., d�/dy and d2�/dydpT respectively). The cross sections shown in figure 1 for

– 3 –
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Figure 7. Total cc̄ and bb̄ cross sections as a function of the incident proton energy. The dif-

ferent curves correspond to: NLO perturbative (solid blue) obtained with nCTEQ15 parton

distributions, dipole model calculation based on the Block parametrization (dashed-magenta),

kT factorization with unintegrated PDF from linear evolution (dashed-dotted green), kT fac-

torization with unintegrated PDF from non-linear evolution for nucleon (short-dashed violet)

and kT factorization with unintegrated PDF from non-linear evolution for nitrogen (dashed

orange). Comparison is made with the results from previous NLO calculation, denoted by

BERSS (short-dashed black curve), ref. [11] and data points as in fig. 3.

The upper limit of the uncertainty band corresponds to the Block dipole withMF = 4mc

while the lower one is the Soyez dipole with MF = 1mc. Our results which include

theoretical uncertainties are in agreement with the LHCb rapidity distributions at 7

TeV and at 13 TeV.

In refs. [15, 16], data are presented for transverse momentum and rapidity distri-

butions. Imposing a cut on transverse momentum, pT < 8 GeV where possible (see

below), we show d�/dy for 2 � y � 4.5 evaluated using perturbative NLO, dipole

model and kT factorization. We also show the transverse momentum distributions in

rapidity ranges y = 2 � 2.5, y = 3 � 3.5 (scaled by 10�2) and y = 4 � 4.5 (scaled by

10�4) where possible. All the calculations were performed by computing the di�erential

distribution of charm quarks, multiplied by the fragmentation fraction for c � D

0, and

finally a factor of two was included to account for antiparticles. The results are shown

in figs. 8, 9, 10 respectively. The highest rapidity bin from LHCb does not include the

pT to 8 GeV, but the distribution falls o� rapidly. The dipole model already includes

– 18 –

Predictions and IceCube limit

23

• IceCube limit  on prompt neutrino flux (PoS(ICRC2015)1079).

• NLO perturbative and kT factorization within the limit.

• Dipole model calculation is in tension with the IceCube limit.

• Overall the flux is well below the astrophysical flux measured by IceCube.
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where the flux is somewhat smaller. The low energy deficit reflects the same deficit

of the cross section shown in fig. 6 since the kT factorization model applies to small x

physics and therefore applies to high energies. At the high energies shown, the linear

kT approach is about 7 times larger than the non-linear kT flux prediction, reflecting

the range of impact that small-x e�ects can have on the high energy prompt flux.

Figure 21. Comparison of the muon neutrino plus antineutrino fluxes using all the ap-

proaches: NLO perturbative QCD with nCTEQ15 (blue) and EPS09 (orange), dipole model

(magenta), kT factorization (green) with the other calculations (black): BERSS [11], ERS

[10], GMS [12] and GRRST [14].

Finally, in fig. 21, we compare the three approaches using the broken power law with

the BERSS [11], ERS [10], GMS [12] and GRRST [14] results. Relative to the BERSS

flux, the dipole model predicts a larger low energy flux, while the kT factorization

model based on the linear evolution predicts a larger high energy flux. On the other

hand the flux based on the kT factorization with nuclear corrections is consistent with

the lower end of the NLO pQCD calculation. Our new perturbative result lies below

the BERSS band for most of the energy range, due to a combination of the nuclear

shadowing and the rescaling of the fragmentation fractions to sum to unity. The total
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Dmitri Kharzeev 
Deep Inelastic Scattering as a probe of entanglement

4

The parton model: basic assumptions

In parton model, the proton is pictured as a collection of 
point-like quasi-free partons that are frozen in
the infinite momentum frame due to Lorentz dilation.

The DIS cross section is given by the incoherent sum of 
cross sections of scattering off individual partons.

How to reconcile this with quantum mechanics?

8

The quantum mechanics of partons
and entanglement

Our proposal: the key to solving this apparent paradox
is entanglement.

DIS probes only a part of the proton’s wave function
(region A). We sum over all hadronic final states;
in quantum mechanics, this corresponds to accessing 
the density matrix of a mixed state

with a non-zero entanglement entropy

DK, E. Levin, arXiv:1702.03489

A

B

DIS probes only a part of the proton’s 
wave function (region A)

We sum over all hadronic final states; in 
quantum mechanics, this corresponds to 
accessing the density matrix of a mixed 
state 

⇢A =
X

n

↵2
n| A

n ih A
n |

probability of a state with n partons

(multiplicity)

↵2
n = pn

The entanglement entropy

S = �
X

n

pn ln pn

S = ln[xG(x)]

Relation between the entanglement 
entropy and parton distribution (1D-
model)

At small-x the entanglement entropy is 
maximal and the proton is a maximally 
entangled state

Can extract entanglement  entropy 
from measurements of multiplicity
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Particle Production in CGC

Photons in pA at high energies (LO)

April 27, 2017 @ BNL

Photon Production with CGC
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“Higher”-order Processes
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Figure 5: Photon production rate as a function of k? in the unit of ⇤QCD in the limit of
vanishing quark mass and for Qs = 5⇤QCD and Qs = 10⇤QCD. The thin lines represent the
exponential fit, while the thick lines with light colors correspond to the power-law type fit.

where J
0

(x) is the zeroth order Bessel function. To calculate the above in
practice, we use the numerical method known as the Quasi Discrete Hankel
Transform (QDHT) [36]3. The computation of the function F (r?) is performed
on a grid corresponding to the points prescribed by the QDHT algorithm. In the
case Qs = 10⇤

QCD

the maximum value on the grid is chosen as rmax

? ⇤
QCD

= 3
and for the case Qs = 5⇤

QCD

we have taken rmax

? ⇤
QCD

= 6. The minimal value
of r? is set by fixing the number of grid points within the QDHT algorithm. In
the calculation of F (r?) we used 102 points. We have tested the sensitivity to
the cuto↵s imposed by the QDHT algorithm. In particular, we confirmed that
the results up to k? ' 7Qs are numerically reliable. This is the maximum value
shown in our final numerical results in Fig. 5.

5.2. Discussion of the results

We show the numerical results for the photon spectrum in Fig. 5 as a function
of the transverse momentum k?. We see that the curve slightly flattens at low
momentum, which is attributed to the saturation property. For the results in
Fig. 5 we consider the case of a single quark flavor with vanishing quark mass
and use ↵ = 1/137. Although nq ⌧ ng ⌧ Q2

s by definition of the semi-CGC
regime of our present interest, there is some theoretical uncertainty in precisely
determining ng of the proton. Thanks to the simple linear dependence on ng

3We thank Francois Gelis for suggesting the QDHT algorithm and for sharing with us his
note on the numerical procedure.

20

Figure 6: Dependence of the total produced photons dN/dy per unit rapidity on the quark
mass m. The value Qs = 10⇤QCD was adopted. The line thickness represents the 3� error
estimate in the MISER Monte Carlo algorithm.

as a result of the expansion in terms of ⇢p, we present our numerical results by
scaling ng out entirely.

The data points on Fig. 5 correspond to the results from the QDHT trans-
form, while the solid lines represent the fit results. The soft part of the spec-
trum up to k? ⇠ 2Qs is very well described with a exponential fitting func-
tion, exp

��p

k2

? + (0.5Qs)2/0.5Qs

�

. As an alternative, a Lorentzian-type fit-
ting function, (k2 + (1.3Qs)2)�2.4, can work as nicely as the exponential form.
The semi-hard part for k? >⇠ 2Qs can be fitted by the perturbative power-law
tail as (log(k?/Qs))1.5/k5.6

? . In Fig. 5 we show the exponential fit by the thin
lines and the power-law fit by the thick lines with light colors. In Ref. [9] the
Glasma photons would yield a thermal-like spectrum in the AA collisions, and
our calculations partially support this for k? <⇠ 2Qs, though a Lorentzian shape
can be another choice.

According to Eq. (58) the number of produced photons dN/dy is given as

1

⇡R2

A⇡R2

p↵sng
· dN

dy
=

↵

2⇡6

N2

c

N2

c � 1
F (0) . (65)

In Fig. 6 we show dN/dy as a function of the quark mass for the choice of
Qs = 10⇤

QCD

. We numerically found that the results for m >⇠ 2⇤
QCD

can
be well fitted by (log(m/⇤

QCD

))1.8/m2.6. From this we can say that the mass
dependence is minor for the strange quark, while the photon production is sup-
pressed by a factor ⇠ 5 for the charm quark.
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UV tail behaves  
 numerically like:

8-dim numerical 
integration  
(Monte-Carlo)

Exponential fit

Annihilation April 27, 2017 @ BNL

Bremsstrahlung Diagram
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with

Tµ

g

(k1?) ⌘
2
X

�=1

Rµ

�

(k1?) . (45)

This last expression extends the Dirac structure found in Ref. [8] to photon production. We note that in
Eq. (44) we introduced a dummy integration over x?, y? and k? to ensure that all the terms have identical
integration variables.

The result (44) can be further simplified by making use of the identities,

Tµ

g

(P?) + Tµ

q

(P?) + Tµ

q̄

(P?)� Tµ

qq̄

(0,P?) = 0 ,

Tµ

q

(P? � k?)� Tµ

qq̄

(k?,P? � k?) = 0 , Tµ

q̄

(k1?)� Tµ

qq̄

(0,k1?) = 0 .
(46)

Using Eq. (46), the expression for the amplitude can considerably simplify to

Mµ(p, q,k
�

) = �q
f

eg2
Z

k?,k1?

Z

x?y?

⇢a
p

(k1?)

k

2
1?

eik?·x?+i(P?�k?�k1?)·y?

⇥ ū(q)
�

Tµ

g

(k1?)U(x?)
batb + Tµ

qq̄

(k?,k1?)Ũ(x?)t
aŨ †(y?)

 

v(p) .

(47)

This expression for the photon amplitude is a key result of this work. In Appendix A, we will show that
this expression for the amplitude in Lorenz gauge is identical to the expression derived in light-cone gauge.

Before we conclude this section, we wish to make a few points regarding the final result. Firstly, in
Eq. (46), the sum of the four e↵ective vertices is zero as a consequence of momentum conservation. If there
is no nuclear and proton momentum transfer, the quark-antiquark dipole cannot be created. The second
and third relations in Eq. (46) stand for the vanishing of contributions if there is no momentum transfer
either from the projectile or the target. We are thus left only with contributions to the photon amplitude
that have i) both the quark and the antiquark interact with the nucleus after being created (and before or
after radiating the photon), and those ii) where the gluon from the proton scatters o↵ the nucleus before
creating the quark-antiquark pair and thence, the photon.

3. The inclusive photon cross section

The probability for creating a qq̄ pair with 4-momenta q and p, respectively, and a photon with momentum
k
�

, for a fixed distribution of sources ⇢
p

in the projectile and ⇢
A

in the target, respectively, is given by

P �

incl.[⇢p, ⇢A] =

Z

d3p

(2⇡)32E
p

d3q

(2⇡)32E
q

d3k
�

(2⇡)32E
k�

X

�

X

spin

�

�M
�

(p, q,k
�

)
�

�

2
. (48)

Here E
p

, E
q

and E
k� denote the relativistic energies of the antiquark, quark and photon, respectively. The

sum over polarizations can be taken by noting that

X

�

�

�M
�

(p, q,k
�

)
�

�

2
=
X

�

✏
µ

(k
�

,�)✏⇤
µ

(k
�

,�)Mµ(p, q,k
�

)Mµ⇤(p, q,k
�

) . (49)

The color average of an inclusive quantity O must be taken after taking the modulus squared of the ampli-
tude [7],

hOi =
Z

D⇢
p

D⇢
A

W
p

[⇢
p

]W
A

[⇢
A

]O[⇢
p

, ⇢
A

] . (50)

The weight functionals W
p

[⇢
p

] and W
A

[⇢
A

] are density matrices that obey the JIMWLK evolution equa-
tions [24, 25, 26, 27] that describe the renormalization group evolution of distributions of color charges in
the wave-functions of the projectile and the target, respectively, from their respective fragmentation regions
at large x down to the small x values probed by measurements in high energy collisions.
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Benic-Fukushima-Garcia-Montero-Venugopalan (2016)

Structure is simple but the full expression is…
Appendix B.1. Photon Ward identity

The photon Ward identity implies that the amplitude vector given in Eq. (47) should satisfy

k
�µ

Mµ(p, q,k
�

) = 0 . (B.1)

As we demonstrate below, this is satisfied independently for Tµ

g

and Tµ

qq̄

terms that constitute the total
amplitude. For Tµ

g

, we immediately notice,

ū(q) k
�µ

Tµ

g

(k1?) v(p) =
1

P 2
ū(q)



/C
L

(P,k1?)
/p�m

2p · k
�

/k
�

� /k
�

/q +m

2q · k
�

/C
L

(P,k1?)

�

v(p) = 0 , (B.2)

which we can easily prove using (/p � m)/k
�

= �/k
�

(/p � m) + 2p · k
�

in the first term and /k
�

(/q + m) =
�(/q + m)/k

�

+ 2q · k
�

in the second term and the Dirac equations satisfied by ū(q) and v(p). For Tµ

qq̄

, it
is somewhat more involved to prove a counterpart of the identity. By definition as given in Eq. (29) Tµ

qq̄

is
a sum of Rµ

�

with � = 9, · · · , 12. Using the explicit forms of Rµ

�

in Eq. (30), we can prove the following
relation,

ū(q)k
�µ

⇥

Rµ

9 (k?,k1?) +Rµ

11(k?,k1?)
⇤

v(p) = �ū(q)k
�µ

⇥

Rµ

10(k?,k1?) +Rµ

12(k?,k1?)
⇤

v(p) .

The di↵erent denominators in the expressions above, N
k

(k?,k1?) in Rµ

9 and Rµ

11 and N
q

(k?,k1?) in Rµ

10

and Rµ

12, cancel with the numerator after taking the contraction with the photon momentum, k
�µ

. This
cancellation occurs in a way similar to the Tµ

g

case as a consequence of anticommuting the gamma matrices
and using the Dirac equations satisfied by ū(q) and v(p) as well as using the on-shell-ness of the photon
momentum. This leads to

ū(q) k
�µ

Tµ

qq̄

(k?,k1?)v(p) = 0 . (B.3)

Since the Tµ

g

and the Tµ

qq̄

contributions separately vanish, we have confirmed that the photon Ward iden-
tity (B.1) is certainly satisfied.

Appendix B.2. Soft-photon factorization

As we will demonstrate explicitly, the photon production amplitude we have derived satisfies the Low-
Burnett-Kroll theorem: we will recover the non-radiative amplitude (and sub-leading pieces coming from
the diagrams (11) and (12) in Fig. 5 in which the photon is not radiated from external legs) The leading
contributions encompass sub-processes in which the photon is radiated after the qq̄ pair scatters o↵ the
nucleus, and thus the photon is attached to exteral legs. Such leading terms possess the factor,

/q + /k
�

+m

(q + k
�

)2 �m2
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/p+ /k
�

�m

(p+ k
�

)2 �m2
. (B.4)

The numerators are finite in the k
�

! 0 limit, and non-vanishing contributions under this limit are

�µ(/p+ /k
�

�m)v(p) ! (/p�m)�µv(p) = 2pµv(p) ,

ū(q)�µ(/q + /k
�

+m) ! ū(q)�µ(/q +m) = 2qµū(q) , (B.5)

while the denominators are divergent in the k
�

! 0 limit, and we should keep a linear term in k
�

as

(p+ k
�

)2 �m2 ! 2p · k
�

, (q + k
�
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. (B.6)

With these simplifications, we find,
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Ward identity:
satisfied separately for Tg and Tqq 

Necessary conditions for correctness

✔

Leading-twist (perturbative)✔
Soft-photon limit (Low-Burnett-Kroll theorem)✔

✔ Gauge invariance (Coulomb/Light-cone)
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Opportunities for Forward Photon Measurements in ALICE at the LHC

Electromagnetic Processes

• real photons: sensitivity to gluons at LO, clear 
kinematic relation

• higher order corrections?

7

• DIS and Drell-Yan are equivalent 
processes
• crossing symmetry
• sensitivity to gluons only at NLO

• e.g. virtual qg-Compton
• main disadvantage of DY: very low 

cross section
• not accessible in pA
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Cleaner observables (EM probes):

Signals of Saturation?
• cleaner observables: EM probes (direct photons, Drell-Yan)

• no final state interaction
• well-understood production process
• well-defined kinematics

• advantage of direct photons:  
large cross section
• forward p–A measurement of DY likely  

not possible with expected luminosity

• interpretation of hadronic observables remains inconclusive
• final state modifications in p–A collisions? 
• production process not fully understood for many hadrons 
• kinematic relation to Bjorken-x uncertain (e.g. fragmentation)

• best alternative candidate: open charm
• direct sensitivity to gluons
• final state interactions?
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NLO pQCD calculations with shadowing (EPS09)
Helenius, Eskola, Paukkunen,  arXiv:1406.1689
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11

       x  
6−10 5−10 4−10 3−10 2−10 1−10

 ) 2
 =

 4
 G

eV
2

g 
( x

, Q

0

2

4

6

8

10

12

14

16
 data+-,D0no LHCb D

 data (wgt)+-,D0with LHCb D
 data (unw)+-,D0with LHCb D

=0.118sαNNPDF3.0 NLO 

       x  
6−10 5−10 4−10 3−10 2−10 1−10

Pe
rc

en
ta

ge
 P

DF
 u

nc
er

ta
in

ty

0
20
40
60
80

100
120
140
160
180
200

 data+-,D0no LHCb D
 data+-,D0with LHCb D

, NNPDF3.0 NLO2=4 GeV2) ) for Q2( g(x,Q∆

R. Gauld et al., arXiv 1506.08025

• usage of forward D measurements by LHCb can constrain gluon 
distribution 
• fit uses normalisation at low y, high pT

• how much of the constraints due to data?

Parameterised Nuclear Modification
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assume nuclear modification of gluon PDFs 

from ratio of integrals obtain nuclear modification of observable
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Toy Model – 
no proper Q2 dependence

large cross section at small x

FoCal in ALICE

• main challenge: separate γ/π0 at high energy
• need small Molière radius, high-granularity read-out

• Si-W calorimeter, effective granularity ≈ 1mm2 

18

electromagnetic calorimeter for γ 
and π0 measurement 

preferred scenario:
• at z ≈ 7m (outside magnet) 

3.3 < η < 5.3  
(space to add hadr. calorimeter)

under internal discussion
possible installation in LS3

note: two-photon separation from π0 decay (pT = 10 GeV/c, y = 4.5, α = 0.5) is d = 2 mm!

Electromagnetic Processes

• real photons: sensitivity to gluons at LO, clear 
kinematic relation

• higher order corrections?

7

• DIS and Drell-Yan are equivalent 
processes
• crossing symmetry
• sensitivity to gluons only at NLO

• e.g. virtual qg-Compton
• main disadvantage of DY: very low 
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Usage of forward D measurements by 
LHCb can constrain gluon distribution
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Fluctuations of the gluon distribution at small-x: correlation of multiplicity and transverse momentum fluctuations

  

Observables at small xObservables at small x

In the MV model:

average over stochastic small-x color fields:

Examples:

●                                                          (cov. gauge) gluon distribution

●                                                          (L.C. gauge) WW gluon distribution

●                                                          dipole forw. scatt. amplitude  

Observables at small xObservables at small x

In the MV model:

average over stochastic small-x color fields:

Examples:

●                                                          (cov. gauge) gluon distribution

●                                                          (L.C. gauge) WW gluon distribution

●                                                          dipole forw. scatt. amplitude

MV model (no quantum corrections):

High-energy observable:

Adrian Dumitru, Vladimir Skokov

Quantum corrections modify the weight:

Fluctuations of the gluon distribution from the small-x e↵ective action

Adrian Dumitru
Department of Natural Sciences, Baruch College, CUNY,

17 Lexington Avenue, New York, NY 10010, USA and

The Graduate School and University Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, USA

Vladimir Skokov
RIKEN/BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

The computation of observables in high energy QCD involves an average over stochastic semi-
classical small-x gluon fields. The weight of various configurations is determined by the e↵ective
action. We introduce a method to study fluctuations of observables, functionals of the small-x
fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semi-
classical gluon field under which a given observable is invariant. Thereby we obtain the e↵ective
potential for that observable describing its fluctuations about the average. We determine explicitly
the e↵ective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan
(MV) model and for a (non-local) Gaussian approximation for the small-x e↵ective action. This
provides insight into the correlation of fluctuations of the number of hard gluons versus their typical
transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution
is fundamentally di↵erent in the MV model, where there is a pile-up of gluons near the saturation
scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially
scale invariant fluctuations above the absorptive boundary set by the saturation scale.

I. INTRODUCTION

High-energy scattering in QCD at fixed transverse momentum scales probes strong color fields, i.e. the regime of
high gluon densities [1]. In the high-energy limit physical observables, such as the forward scattering amplitude of a
dipole from a hadron or nucleus, are typically expressed in terms of expectation values of various Wilson line operators
O; see, for example, Ref. [2]. The expectation value hOi corresponds to a statistical average1 over the distribution of
“small-x gluon fields”. For example, if quantum corrections are neglected this distribution is commonly described by
the McLerran-Venugopalan (MV) model [4]:

�r2

?A
+(x�, x?) = g⇢(x�, x?) , (1)

Z =

Z
D⇢ e�S[⇢] , S[⇢] =

Z
dx�d2x?

tr ⇢(x�, x?) ⇢(x�, x?)

2µ2(x�)
. (2)

Here, A+ is the covariant gauge classical field (describing the small-x gluon fields) sourced by the random valence
charge density ⇢ which one averages over.

R
dx� µ2(x�) corresponds to the average color charge density squared per

unit transverse area and is the only parameter of the model; it is proportional to the thickness of the nucleus ⇠ A1/3.
The expectation value of an electric Wilson line V (x?), for example, is then computed as2

htrV (x?)i = 1

Z

Z
D⇢ e�S[⇢] trPe

�ig

1R

�1
dx

�
A

+
(x

�
,x?)

. (3)

The forward scattering amplitude N (r) of a quark - antiquark dipole of size r = |y? � x?| is given by

N (r) =

⌧
1� 1

N
c

trV †(x?)V (y?)

�
=

1

Z

Z
D⇢ e�S[⇢]

2

41� 1

N
c

trPe
ig

1R

�1
dx

�
A

+
(x

�
,x?)

Pe
�ig

1R

�1
dx

�
A

+
(x

�
,y?)

3

5 . (4)

We employ hermitian generators. The size r where N (r) grows to order 1 defines the (inverse) saturation scale Q�1

s

.
In the MV model one finds that Q2

s

⇠ C
F

g4
R
dx�µ2(x�). For transverse momenta q2 � Q2

s

the Fourier transform of

1 Kovner describes this as an average over the Hilbert space of the target, i.e. that the weight W [A+] ⌘ exp(�S[A+]) which determines
the probability for a given configuration of A+ is analogous to the modulus squared of the wave function of the target [3].

2 log htrV i is power divergent in the IR and so requires a cuto↵. We simply write the formal Eq. (3) to illustrate the averaging procedure.
The dipole probe from Eq. (4) does not exhibit such a power-law divergence in the IR.
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the forward scattering amplitude defines the dipole unintegrated gluon distribution

xG(x, q2) ' g2
⌦
tr |A+(q)|2↵ . (5)

Quantum corrections to the MV model modify the statistical weight W [⇢] ⌘ exp(�S[⇢]). Ref. [5] proposed a
Gaussian “mean-field” approximation for W [⇢] at small light-cone momentum fractions (far from the valence sources)
which reproduces the proper gluon distribution (or dipole scattering amplitude) both at small (q2 ⌧ Q2

s

) as well as
at high (q2 � Q2

s

) transverse momentum:

W
G

[⇢] = e�S

G

[⇢] , S
G

[⇢] =

Z
d2x?d

2y?
tr ⇢(x?) ⇢(y?)

µ2(x? � y?)
. (6)

This non-local Gaussian can be rewritten in q-space as3

S
G

[⇢] =

Z
d2q

(2⇡)2
tr ⇢(q) ⇢(�q)

Z
d2r

e�iqr

µ2(r)

⌘
Z

d2q

(2⇡)2
tr ⇢(q) ⇢(�q)

µ2(q2)
. (7)

This action reproduces the correct dipole scattering amplitude and Weizsäcker-Williams gluon distribution in the
short distance (high transverse momentum) limit, c.f. ref [5], with

µ2(q2) ' µ2

0

✓
q2

Q2

s

◆
1��

. (8)

Here, � ' 0.64 is the BFKL anomalous dimension [6] (in the presence of a saturation boundary [7]). Q2

s

and µ2

0

are
evaluated at the rapidity of interest (like in the MV model µ2

0

is again proportional to the thickness of the nucleus
⇠ A1/3). We will not spell out this dependence on Y explicitly since our focus here is not on the growth of Q

s

with Y
which is well known. For the present purposes the most important e↵ect of the resummation of quantum fluctuations
is that µ2(q2) increases with transverse momentum when q2 > Q2

s

.
The paper is organized as follows. In Sec. II we present the basic idea for computing an e↵ective potential for a

given observable by introducing a constraint into the functional integral. In Sec. III, in order to illustrate the approach
with a simple example we compute the e↵ective potential for the number tr ⇢2 in the MV model on a single site. We
then compute the e↵ective potential for the covariant gauge gluon distribution function in Sec. IV. We proceed to
calculate the fluctuations of the gluon multiplicity and of the average squared transverse momentum in Sec. V. In
Sec. VI we present results of numerical Monte-Carlo simulations within the MV model and for the solution of the
JIMWLK renormalization group equation. We end with a discussion and outlook in Sec. VII.

II. THE BASIC IDEA: INTRODUCING THE CONSTRAINT EFFECTIVE POTENTIAL

Expectation values such as those written in Eqs. (3,4) refer to a statistical average of an observable O[⇢] over
all configurations ⇢(x�, x?) from the ensemble W [⇢]. On the other hand, we may be interested in the value of an
observable for a specific subset of configurations such as configurations with a high number of gluons or with a specific
unintegrated gluon distribution. These represent more “global” measures averaging over all fluctuations of ⇢(x�, x?)
which do not a↵ect, say, the unintegrated gluon distribution. In other words, our goal is to perform the integral over
⇢ subject to the contraint that, for example, O[A+] = g2tr |A+(q)|2 is fixed, thereby decomposing the space of all
⇢(q), or A+(q), into invariant subspaces (w.r.t. the given observable).

We illustrate the fluctuations of the gluon distribution originating from the fluctuations of the classical valence color
charge density ⇢ in Fig. 1. For simplicity we show a simple example corresponding to the fluctuations of the color
charge representation of a system composed of a quark and an anti-quark. The MV model describes the fluctuations
of a system of many valence charges in a high-dimensional representation about the most likely representation [8].

3 Note that we define 1/µ2(q2) ⌘
R
d2r e�iqr

/µ

2(r).

E. Iancu, K. Itakura and L. McLerranProposed new calculation scheme for 
the functional integral through effective 
action

  

Idea: integrate out fluctuations which do not affect observable O[A+]
         → obtain effective action / potential for that observable

(at large Nc; or else do proper Legendre transform)

*
same result for non-local Gaussian model by Iancu, Itakura & McLerran (approx. to JIMWLK), provided

+ = 0.63,  BFKL anom. dim. in presence of 
               absorptive (saturation) boundary    (Mueller & Triantafyllopoulos)

(we work directly with MV / JIMWLK action w/o introducing “dipole picture”)

(cov. gauge gluon distribution at q>Qs)

at q > Qat q > Qss : :
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Adrian Dumitru 
Fluctuations of the gluon distribution at small-x: correlation of multiplicity and transverse momentum fluctuations

Consider fluctuations around this result

One can understand how this fluctuations 
affect observables (multiplicity etc.)

  

Idea: integrate out fluctuations which do not affect observable O[A+]
         → obtain effective action / potential for that observable

(at large Nc; or else do proper Legendre transform)

*
same result for non-local Gaussian model by Iancu, Itakura & McLerran (approx. to JIMWLK), provided

+ = 0.63,  BFKL anom. dim. in presence of 
               absorptive (saturation) boundary    (Mueller & Triantafyllopoulos)

(we work directly with MV / JIMWLK action w/o introducing “dipole picture”)

(cov. gauge gluon distribution at q>Qs)

at q > Qat q > Qss : :

  

Fluctuations:  correlation of gluon number and transv. momentum

Ansatz:

● a > 0:    fluctuation “know” about scale Q
s

● a → 0:  scale invariant fluctuation

for small amplitude fluctuations

maximize           (and        ), minimize “penalty” 

MV model:                           0<a<1

  (because for a=0:                                             )

IIM model (anom. dim.)        a ≈ 0

  → Mueller picture where Qs corresponds                

       to an absorptive boundary

( ΔS ~ log p
-1
 where p is probability of fluctuation)

increases with

  

JIMWLKJIMWLK

MV modelMV model

● ΔNg ~ 10 – 100 for A = 0.1 fm2, Qs
2 = (1-2.5 GeV)2

● tight correlation (~ single curve, few outliers)

● JIMWLK shows correlations in b-space

● strong increase of Δq2 with ΔNg in small area

 “patches”

Correlation of transv. momentumCorrelation of transv. momentum

and multiplicity fluctuationsand multiplicity fluctuations
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● ΔNg ~ 10 – 100 for A = 0.1 fm2, Qs
2 = (1-2.5 GeV)2

● tight correlation (~ single curve, few outliers)

● JIMWLK shows correlations in b-space

● strong increase of Δq2 with ΔNg in small area

 “patches”

Correlation of transv. momentumCorrelation of transv. momentum

and multiplicity fluctuationsand multiplicity fluctuations

Evolution modifies spectrum 
of fluctuations



Björn Schenke 
Subnucleonic fluctuations, diffraction, and small-x fluctuations

Introduce geometric fluctuations

14
B j ö r n  S c h e n k e ,  B N L

H1 collaboration, Eur. Phys. J. C46 (2006) 585, 
Phys. Lett. B568 (2003) 205 
ZEUS collaboration, Eur. Phys. J. C24 (2002) 345 
Eur. Phys. J. C26 (2003) 389

H. Mäntysaari, B. Schenke, Phys. Rev. Lett. 117 (2016) 052301 
Phys.Rev. D94 (2016) 034042 

Assume 3 valence quark-like hot spots

d�

�⇤p!V p

dt

=
1

16⇡

���hA�⇤p!V p(x,Q2
,�)i

���
2

Shape fluctuations of the 
proton’s gluon distribution 
are needed to describe 
incoherent diffractive vector 
meson data from HERA



Raju Venugopalan 
Probing extreme QCD through ridge-like correlations in small systems: status and problems

The	ridge	in	A+A	collisions	
ψ3	

Alver,	Roland,	PRC81(2010)	054905	
Alver,	Gombeaud,	Luzum,	Ollitrault,	PRC82	(2010)	03491	

Structure	of	ridge-correla8ons	can	be	understood	as	hydrodynamic	flow		
driven	by	event-by-event	fluctua8ons	in	nucleon	posi8ons	

1

N

trig

N

assoc.

d

2

N

d��
= 1 + V

1

Cos(��) + V

2

Cos(2��) + · · ·

IP-Glasma	

Some	evidence	of	sensi8vity	of	data	to	sub-nucleon	scale	fluctua8ons	

Gale,Jeon,Schenke,Tribedy,Venugopalan,	PRL110	(2013)	012302	

Collec8vity	across	system	size	

Collec8vity	across	wide	energy	scales	

Panta	Rhei	?	

Heraclitus	of	Ephesus	
							535-475	BC	

Strong final state interactions? Hydrodynamics fits to the 
data, but correlations are observed up to high transverse 
momenta and small multiplicity. 

Issues	with	the	hydrodynamic	paradigm:	III	

Large	anistropies	at	larger	pT	and	smaller	Nch	than	one	might	reconcile	with	a	
hydrodynamic	descrip8on	

Tracing	azimuthal	ini8al	state	correla8ons	
Lappi,	arXiv:1501.05505	
Lappi,Schenke,Schlich8ng,RV,	arXiv:1509.03499	

MV	
JIMWLK	

What	about	4-par8cle	correla8ons?	

=	
First	ini8al	state	results	on	cn{4},	SC{m,n}	
	Kevin	Dusling’s	talk	at	10:30	am	Friday	

Dusling,Mace,RV,	in	prepara8on	



Kevin Dusling 
Collectivity from the initial state: Four-particle correlations in proton-nucleus collisions

Kevin Dusling, Mark Mace and Raju Venugopalan ArXiv:1705.00745

Collectivity from four-particle initial 
state correlations has remained 
elusive…

Compute v2{m} systematically for the 
first time in an initial state framework

First computation of the average of 
the product of four light-like 
“dipole” Wilson-line correlators 

2

tering of nearly collinear quarks in the projectile scatter-
ing o↵ color domains of size 1/Q

s,T

inside the nuclear
target [15, 21, 22]. The m-particle correlation can be
expressed as

d

m

N

d

2pi? · · · d2pm?
=

mY

i=1

Z
d

2bi

Z
d

2ki

(2⇡)2
W

q

(bi,ki?)

·
Z

d

2rie
i(pi?�ki?)·ri

*
mY

j=1

D

⇣
bj +

rj
2
,bj �

rj
2

⌘+
. (1)

Here we have made the simplifying assumption that
the m-particle Wigner function representing quark
distributions in the incoming proton factorizes as

W

q

(b1,k1, ...,bm,km) =
mQ
i=1

W

q

(bi,ki). Eikonal scat-

tering is sensitive to the quark dipole correlatorD(x, y) =
1
Nc

Tr
⇥
U(x)U †(y)

⇤
, where N

c

is the number of colors

and U(x) (U†(y)) are light-like Wilson lines appear-
ing in the amplitude (complex conjugate amplitude) for
quarks multiple scattering o↵ gluons in the target. In the
McLerran-Venugopalan (MV) model [24–26], these Wil-
son lines are path ordered exponentials of color charges
in the target, and the average h· · · i in Eq.(1) is per-
formed over a Gaussian distribution of color charges with
a weight proportional to Q2

s,T

[4, 27]. We will assume fur-
ther that the Wigner distributions of the nearly collinear
quarks have the Gaussian form

W

q

(bi,ki?) =
1

⇡

2
e

�|bi|2/B
e

�|ki|2B
, (2)
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where the integration over the 2 and 4-particle phase
space is implicit.
The computation of two-particle cumulants is straight-

forward. The corresponding anisotropy coe�cients are
defined to be [30]
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Jiangyong Jia 
“Long-range collectivity” in small systems

Summary of collectivity in small system 
n  Collectivity associated with ridge must involve many particles in 

multiple η ranges à access via subevent cumulant methods 

26 

Coexistence of initial state & final state scenarios?  

Key issue: How to constrain timescales for onset of collectivity? 

Challenge for both initial & final state scenarios? 

n  LHC  v2 associated with ridge does not turn off at low Nch. 
n  RHIC v2{4} increases and approach v2{2} at lower √s 

Challenge (or not) for initial state only scenarios? 

n  LHC v2
pp <v2

pPb in all Nch and all √s. 
n  LHC c2{4} <0 down to very low Nch and more negative at higher pT. 
n  RHIC geometry scan suggest ordering of vn follows that of εn. 
n  LHC 5% v2 at pT~10 GeV.   
n  LHC symmetric cumulants SC(2,3), SC(2,4) similar to PbPb 

Long-range collectivity via subevent cumulants 19 
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pPb: methods consistent for Nch>100, but split below that 

pp 13 TeV 
4% v2 

arXiv:1701.03830 
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pPb 5 TeV 

Long-range collectivity via subevent cumulants

arXiv:1701.03830

Examples of initial vs final state scenarios 3 

CGC  

1/Qs 

Domain of color fields of size 1/Qs, each produce 
multi-particles correlated across full η. 
 

Uncorr. between domains, strong fluct. in Qs 
 

More domains, smaller vn, more Qs fluct, stronger vn 

Hot spots (domains) in transverse plane e.g IP-
plasma, boost-invariant geometry shape 
 
Expansion and interaction of hot spots generate 
collectivity 
 
vn depends on distribution of hot spots (εn) and 
transport properties.   

Hydro 

Ongoing debate whether hydro is applicable in small systems 

Well motivated model framework, need systematic treatment 
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Alex Kovner 
Exploring correlations in the CGC wave function

A. Kovner, M. Lublinsky and V. Skokov, 
arXiv:1612.07790 [hep-ph]

Light Cone Wave Function

HLCQCD |Ψ⟩ = E |Ψ⟩ Born-Oppenheimer adiabatic approximation

k+

Λ

ψ
Λ

soft
modes

hard
(valence)
modes

ρ

Λ

Λ ’

k+Boost

Λ Λ ’

k+ e δy+k

ψ
Λ’

Hard particles with k+ > Λ scatter of the target. Hard (valence) modes are described
by the valence density ρ(x⊥) (shock wave).

The boost opens a window above Λ with the width ∼ δy. The window is populated
by soft modes, which became hard after the boost. These newly created hard modes do
scatter off the target.

In the dilute limit ρ ∼ 1; gluon emission ∼ αs ρ, LO = one gluon, NLO = 2 gluons/quarks

The reproduce v3 one should take into 
account correlations of soft gluons

Study correlated structure of 
the initial wave function
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Things got more interesting.
The correlations point to collective, or at least quasi collective behavior.

Alex Kovner (University of Connecticut ) Exploring correlations in the CGC wave function. April 28, 2017 5 / 21
double inclusive spectrum
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Where is v3?

All the approaches invariably lead to ”symmetry”

σ(pT , kT ) = σ(pT ,−kT )

It is NOT a symmetry of QCD: it is ”acccidental”.

E.G: It is broken by final state interactions: L.McLerran and V. Skokov :
arXiv:1611.09870; B.Schenke, S. Schlichting, R. Venugopalan Phys.Lett.
B747 (2015) 76-82,

Is the ”dilute” CGC state we are using good enough?

Better approximation to the CGC state?

Alex Kovner (University of Connecticut ) Exploring correlations in the CGC wave function. April 28, 2017 8 / 21

A single high pT parton in the wave 
function is most likely accompanied by 
several lower pT partons, who 
collectively balance the transverse 
momentum
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FIG. 2: The correlation function as a function of the azimuthal angle, � for di↵erent values of z = p/k. The correlation
functions are defined in the text and normalized by C(z = 1,� = 0). Left panel - correlation in the projectile wave function.
Right panel - correlation in particle production.

The expression A
1

yields “hard” back to back production. This is the analog of a similar term in our calculation
of pair density in the projectile wave function, and we neglect it for the same reason. We now combine all the terms
to obtain
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In Fig. 2 we show the correlation functions for produced gluons (right) and for gluons in the projectile wave function
(left). For the former, we defined the correlation function using Eq. (60) and normalizing by the uncorrelated piece
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For the latter, the correlations function is defined similarly.
The first and the third harmonics of the correlations functions are shown in Fig. 3.

IV. DISCUSSION AND CONCLUSIONS.

Note that the odd part of the production cross section is proportional to µ4�4. This means that if either the
projectile or the target is dilute, this contribution to the correlated production vanishes. In this respect it is similar
to the even contribution from “glasma graphs”. As is clear from Eq. (74) the leading contribution to the odd part of
the correlation function is the same order in the color charge density as that to the even part, and is just suppressed
by one power of ↵

s

.
Another important point is that just like the glasma graph contribution, the odd contribution is long range in

rapidity. In fact our result Eq. (74) is rapidity independent. Some dependence on rapidity separation between the
gluons will undoubtedly appear once the rapidity di↵erence is large enough |⌘

k

� ⌘
p

| ⇠ 1/↵
s

. This e↵ect is not
accounted for in our calculation.

The present calculation does not include contributions to two particle production arising from a single Pomeron
exchange. This contribution ( at the leading order in weak field expansion) is proportional to ↵

s

µ2�2 and obviously
does not appear in our formulae. For strong fields these contributions are subleading and for that reason they are not
contained in the CGC wave function. This single Pomeron mechanism leads predominantly to back-to-back minijet
production which can in principle contribute to nonvanishing odd azimuthal anisotropy. Such back-to-back jets are
however subtracted in the experimental analysis and are of no interest to us here.
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Note that the odd part of the production cross section is proportional to µ4�4. This means that if either the
projectile or the target is dilute, this contribution to the correlated production vanishes. In this respect it is similar
to the even contribution from “glasma graphs”. As is clear from Eq. (74) the leading contribution to the odd part of
the correlation function is the same order in the color charge density as that to the even part, and is just suppressed
by one power of ↵
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µ2�2 and obviously
does not appear in our formulae. For strong fields these contributions are subleading and for that reason they are not
contained in the CGC wave function. This single Pomeron mechanism leads predominantly to back-to-back minijet
production which can in principle contribute to nonvanishing odd azimuthal anisotropy. Such back-to-back jets are
however subtracted in the experimental analysis and are of no interest to us here.
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FIG. 3: The first and the third cumulants as a function of z = p/k obtained from the correlation function the projectile wave
function (WF) and from double inclusive particle production (PP).

Our calculation is based on the CGC wave function derived in the limit of the dense projectile. Recall that in
Ref. [34] this wave function was obtained in the leading order of light cone perturbation theory in strong background
with ⇢ ⇠ 1/g. This wave function di↵ers from the ”dilute CGC” coherent state by the Bogoliubov squeezing prefactor
which is an O(1) correction in this parametric regime. In this sense the squeezing provides the most important
correction to the wave function. All other corrections not included in this Bogoliubov factor lead to terms suppressed
by powers of the QCD coupling on the level of the wave function.

We have indeed shown that the full account of the squeezing leads to an O(1) correction to the “glasma graph” results
both in the single inclusive and the double inclusive production cross sections. This O(1) correction unfortunately
preserves the accidental symmetry (k, p) ! (k,�p) observed in the dilute regime. However the expression for the
double inclusive production also contains a term odd under this transformation. This term is suppressed by a single
power of ↵

s

relative to the glasma graphs contribution. Our strategy in this paper was to take this odd contribution
at its face value and explore its consequences.

In order to get our numerical estimates we had to expand the production cross section to leading order in powers
of ⇢. Excluding the odderon, the leading contribution is of order g6⇢4. In this order our calculation should be
interpretable in terms of a finite number of Feynman diagrams. We have tentatively identified the relevant graphs
in Fig. 1. We note that the procedure employed here does not sum all the Feynman diagram contribution to the
double inclusive cross section at order g6⇢4. For example the running coupling correction to the glasma graphs
is absent. However the physical feature that allows for appearance of the odd contribution in our calculation is the
nonfactorizable production of the two gluons (configuration by configuration at fixed color charge density). We believe
that including of the additional factorizable terms at the same order in ↵

s

(like the running coupling correction) will
have no e↵ect on the calculation of v

3

.
We now discuss qualitative features of our results.
Consider first the shape of the (scaled, see Eq. (74)) correlation function in Fig. 2. Qualitatively, the gluon pair

density in the projectile CGC wave function is consistent with the expectations based on KLM argument outlined
in the introduction. Indeed the pair density has a strong peak in forward direction. At z ⇡ 1 the peak is close to
� = 0. As z grows the peak decreases in hight and moves to larger angles, but always stays at cos� > 1/

p
3. These

properties remain practically unaltered in the double inclusive gluon production. The overall shape of the production
cross section resembles closely the form of the gluon pair density in the projectile wave function.

Note the overall normalization of the double inclusive production amplitude. As expected, it is suppressed by the
factor of S?p2, reflecting the fact that the sources of correlation are local in the coordinate space. If we were able
to calculate production for p2, k2 ⇠ Q2

s

, the suppression factor would presumably be S?Q2

s

. This is exactly the same
as that of the local anisotropy [18, 19, 23] and the “glasma graph” [16], or Bose enhancement [54] contributions.
Our result has an additional suppression by a factor of ↵

s

relative to those contributions, however it is leading at
large N

c

whereas both the glasma graphs and the local anisotropy are order 1/N2

c

[16, 55]. At N
c

= 3 and ↵
s

⇠ .2
the relative importance of these contributions is determined by a numerical factors of order one, which may well
be model-dependent. It does however raise an interesting possibility that additional contribution to v

2

that should

third cumulants



Amir Rezaeian 
Elliptic flow from color-dipole orientation in pp and pA collisions

E. Iancu and A. Rezaeian, 
arXiv:1702.03943

Color dipole orientation as 
an origin of elliptic flow

21

Color-dipole orientation as an origin of elliptic flow 

N✓ > 0 �! v2 > 0

N(b||r) > N(b ? r)

✦ The scattering is stronger when the dipole orientation is (anti)parallel to its impact 
parameter (θ = 0 or θ = π) than for a dipole perpendicular on b (θ = π/2). 

✦ The difference between ‘parallel’ and ‘perpendicular’ scattering increases with the dipole 
size r and also with the impact parameter b. 
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✓ The color-dipole orientation (and v_2) probes the inhomogeneity of the target.

pp v. pA collisions

• v
2

! 0 for pT ! 0 or large pT .
The angular orientation cannot play any role when either the

momentum pT , or the dipole size r, are too small.

• v
2

! 0 for b, B ! 0.

• v
2

(p
max

) & 0.1 when borB ⇠ the typical size for inhomogeneity in

the target:

b ⇠ R & 0.2 fm for a proton and B ⇠ RA & 6.5 fm for a large

nucleus.

8

Color-dipole orientation: including finite-size effect of the projectile

Proton GPD:

r

B

p

b



Sören Schlichting 
Event-by-event pre-equilibrium dynamics — from gluon saturation towards the onset of hydrodynamics

A. Kurkela, A. Mazeliauskas, J.-F. Paquet, S. Schlichting, D. Teaney (arXiv:1704.05242)
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gluons

strong color 
fields

dense 
partonic 
plasma 

min-jets + 
soft thermal bath equilibrium

time

classical-statistical  
lattice gauge theory eff. kinetic theory hydro

By combination of weak-coupling methods a complete 
description of early-time dynamics can be achieved 

Early time dynamics & equilibration process
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Event-by-event pre-equilibrium dynamics

Goal: Obtain event-by-event initial conditions including weakly 
coupled pre-equilibrium evolution

-> Eliminate uncertainties in extraction of QGP transport properties  
due to artificial time scale τHydro when hydro simulation starts

Challenge: Different degrees of freedom relevant at different times 

classical fields, quasi-particles, energy-momentum tensor

Brute force calculation extremely challenging (CYM f(x,p), 3+2+1D EKT) 

Exploit memory loss to use macroscopic degrees of freedom  
for description of pre-equilibrium dynamics 

Ultimately we are only interested in calculation of energy-momentum tensor
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Macroscopic pre-equilibrium evolution

Extract energy-momentum tensor Tμν(x) 
from classical statistical lattice simulation

Evolve Tμν from initial time  τ0~1/Qs to  
hydro initialization time τHydro using eff. 
kinetic theory description

Keegan,Kurkela, Mazeliauskas, Teaney JHEP 1608 (2016) 171 
Kurkela, Mazeliauskas, Paquet, SS, Teaney (in preparation)

Causality restricts contributions to Tμν(x) to  
be localized from causal disc |x-x0|< τHydro-τ0 
useful to decompose into a local average  
TμνBG(x) and fluctuations δTμν(x) 
 
Since in practice size of causal disc is small 
τHydro-τ0 << RA fluctuations δTμν(x) around 
local average TμνBG(x) are small and can  
be treated in a linearized fashion
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Energy-momentum tensor on the hydro 
surface can be reconstructed directly from 
initial conditions according to

Macroscopic pre-equilibrium evolution

Effective kinetic theory simulations only 
need to be performed once to compute 
background evolution and Greens functions

T

µ⌫(⌧, x) = T

µ⌫
BG

⇣
Qs(x)⌧

⌘
+

Z

Disc
G

µ⌫
↵�

⇣
⌧, ⌧0, x, x0, Qs(x)

⌘
�T

↵�(⌧0, x0)

non-equilibrium evolution 
of (local) average background

non-equilibrium Greens function  
of energy-momentum tensor 
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Event-by-event pre-equilibrium evolution 

Consistent description of pre-equilibrium dynamics ensures smooth 
transition to hydrodynamics at times τ>τHydro

1) Evolve IP-Glasma initial conditions to early time τ0 = 0.2 fm/c 
2) Macroscopic pre-equilibrium evolution to hydro initialization time τHydro 
3) Hydrodynamic evolution from τHydro ( η/s = 2/(4π) | conformal EoS )

Energy density in the central region of Pb+Pb collision

Eff. kinetic theory

τHydro
τHydro
τHydro

Free-streaming

τHydro
τHydro
τHydro

Energy density in the central 
region of Pb+Pb collision



Christophe Royon 
Probing the BFKL dynamics at hadronic colliders 23

Conclusion

• Full implementation of BFKL NLL kernel for many jet proceeses at
HERA, Tevatron and LHC

• Forward jets at HERA: DGLAP NLO fails to describe HERA data, good
description of data using BFKL NLL formalism

• Mueller Navelet jets: Larger decorrelation expected for BFKL
formalism, unfortunately suffers a lot of higher order corrections, NLL
BFKL with saturation in progress

• Jet veto measurements in ATLAS: mainly not related to BFKL
resummation effects

• Jet gap jets:

– NLL BFKL cross section implemented in HERWIG (Kernel)

– Fair description of D0 and CDF data

– Full NLL calculation in progress

– Jet gap jet events in diffraction: clean tests of BFKL, modulo the
survival probability (and its depndence on kinematics)

3

Forward jet measurement at HERA

J

W

s

2

Y= log(x  / x)

eff
x

f
J

P

*

2

γ
l

T
2Jet ( k   )

Q

• Full BFKL NLL calculation used for the BFKL kernel, available in S3
and S4 resummation schemes to remove the spurious singularities
(modulo the impact factors taken at LL)

• Equation:

dσγ∗p→JX
T,L

dxJdk2
T

=
αs(k2

T )αs(Q2)

k2
TQ

2
feff (xJ , k

2
T )

∫ dγ

2iπ

(

Q2

k2
T

)γ

φγ
T,L(γ) e

ᾱ(kTQ)χeff [γ,ᾱ(kTQ)]Y

• Implicit equation: χeff (γ,α) = χNLL(γ,α,χeff (γ,α)) solved
numerically (Nucl. Phys. B 739 (2006) 131; Phys. Lett. B 655 (2007)
236; Eur. Phys. J. C55 (2008) 259)

4

Comparison with H1 triple differential data

d σ/dx dpT
2 d Q2 - H1 DATA
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Akio Ogawa 
Polarized p+A Physics at Forward Rapidity at STAR

19
STAR at RHIC offers unique opportunities to study low-x 

gluon

▪ STAR @ RHIC can reach the saturation region at 
forward rapidity in p+A 

▪ Polarized protons  

▪ Scanning A ➔ Au, Al, … 

▪ pT scan and rapidity/x scan may allow to cross 
saturation scale Qs

2 (x)  

       STAR can study evolution of Q2
s
(x) with A 

▪ First results on Transverse Single Spin Asymmetry AN  

▪ Small to no suppression in p+Au 

▪ Results coming soon for 

• Di-hadron angular correlation 

• RpA for π0 and photons 

• Future forward upgrade at STAR is proposed,  
including saturation/pA physics at forward and 
mid-rapidity 

Summary and Outlook



Paul Newman 
Low x physics and saturation: from HERA to future DIS and the LHeC

9 

Diverse physics goals 

require precision 

throughout wide 

accessible kinematic 

region.  

13 

•  Long tracking  
region (pixels + 
strips) à 1o  

electron hits  
2 tracker planes 

•  Lar / Tile calorimeter 
leaning heavily on LHC 
experience 

•  Beamline insrumentation 
considered from outset.  

•  Future DIS facilities are vital 
to fully establish and characterise 
saturation and the dynamics of its  
onset à the energy frontier of QCD 

•  Needs ep and eA inclusive, diffractive, semi-inclusive 
over a range of energies 

•  Complementarity beween EIC and LHeC 

•  LHeC working towards next CERN Council European Strategy 
exercise (2020) with a view to running in later stages of LHC 
(post-LS4, from ~2031) … lots to do! 

High W 

Low W 

•  At fixed √s, decay muon  
direction is determined  
by W = √sγp 

•  To access highest W, acceptance  
in outgoing electron beam  
direction crucial  

e p 



Daniel Tapia Takaki 
Studying gluon saturation and nuclear gluon effects using forward heavy-ion probes and UPCs

3

http://www.int.washington.edu/PROGRAMS/17-65w/

 INT workshop

Daniel Tapia Takaki        Saturation: Recent developments, new measurements/ideas – BNL      April 26 2017

4

 DIS 2017

Daniel Tapia Takaki        Saturation: Recent developments, new measurements/ideas – BNL      April 26 2017

WG2 conveners

58

LHC schedule 
CERN Yellow Report: CERN-PH-LPCC-2015-001

Daniel Tapia Takaki        Saturation: Recent developments, new measurements/ideas – BNL      April 26 2017
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From DIS 2017 —sensitive to saturation …Not UPCs but 
possible to use CASTOR in UPC studies in the future 

Daniel Tapia Takaki        Saturation: Recent developments, new measurements/ideas – BNL      April 26 2017

Cynthia Hadjidakis     ALICE Physics Week Paris    May 20th 2010 55

Forward detectors at CMS

Sercan Sen, U. of Iowa Forward Physics at the LHC, Reggio Calabria, 2013

CMS Forward Detectors

TOTEM T1, 3.1 < |η| < 4.7

CMS

140m
147m 220m

FSC

Zero Degree Calorimeter 
|η| > 8.1 

Forward Shower Counters
6 < |η| < 8

TOTEM Roman Pots
±147m, ±220m

HF (Hadron Forward)
3 < |η| < 5 

BSC (MinBias triggers)
3.23 < |η| < 4.65

TOTEM T2, 5.3 < |η| < 6.5
CASTOR, 

-6.6 < η < -5.2 
see Aldo Penzoʼs talk
on Wednesday at 4pm

3/30Daniel Tapia Takaki        Saturation: Recent developments, new measurements/ideas – BNL      April 26 2017
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• Small x evolution and hadron production at NLO

• Spin at small x

• TMD physics

• Small-x physics in e+p and e+A DIS

• Particle production in pA

• Correlations
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